JOURNAL OF

The volume measure for flat connections as limit of the Yang-Mills measure

Ambar N. Sengupta
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, USA

Received 2 April 2002; received in revised form 18 November 2002

Abstract

We prove that integration over the moduli space of flat connections can be obtained as a limit of integration with respect to the Yang-Mills measure defined in terms of the heat-kernel for the gauge group. In doing this we also give a rigorous proof of Witten's formula for the symplectic volume of the moduli space of flat connections. Our proof uses an elementary identity connecting determinants of matrices along with a careful accounting of certain dense subsets of full measure in the moduli space.

© 2003 Elsevier Science B.V. All rights reserved.
MSC: 81T13

Subj. Class.: Graphical theory; Differential geometry
Keywords: Yang-Mills measure; Volume measure; Flat connections

1. Introduction

1.1. Summary and brief background

We work with a closed, oriented surface Σ of genus $g \geq 2$, and a compact, connected, semisimple Lie group G equipped with a bi-invariant metric. The space \mathcal{A} of all connections on a principal G-bundle over Σ has a natural symplectic structure which is preserved by the pullback action $\omega \mapsto \phi^{*} \omega$ of the group \mathcal{G} of bundle automorphisms ϕ. The moment map turns out to be $J: \omega \mapsto \Omega^{\omega}$, where Ω^{ω} denotes the curvature of any connection ω. In this setting, the Marsden-Weinstein procedure can be carried out rigorously [19] and produces a symplectic structure $\bar{\Omega}$ on the smooth strata of $J^{-1}(0) / \mathcal{G}$. Since $J^{-1}(0)$ is the set of connections with zero curvature, $J^{-1}(0) / \mathcal{G}$ is the moduli space of flat connections. This

[^0]space, along with the symplectic structure $\bar{\Omega}$ on it, is of interest from many different points of view (as attested to by the collection [14]). To be precise, $J^{-1}(0) / \mathcal{G}$ is not, in general, a smooth manifold but there is a subset \mathcal{M}_{g}^{0} (arising from points of $J^{-1}(0)$ of "minimal" isotropy) which is a manifold and $\bar{\Omega}$ is a symplectic structure on \mathcal{M}_{g}^{0}.

In this paper we:

- give a rigorous proof of Witten's formula [24, formula (4.72)]

$$
\begin{equation*}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{g}^{0}\right)=|Z(G)| \operatorname{vol}(G)^{2 g-2} \sum_{\alpha} \frac{1}{(\operatorname{dim} \alpha)^{2 g-2}} \tag{1}
\end{equation*}
$$

for the symplectic volume of the moduli space \mathcal{M}_{g}^{0} of flat connections, for a compact, semisimple gauge group G, over a closed oriented surface of genus $g \geq 2$ (terminology, notation, and hypotheses are explained in detail later in this introduction; note also that \mathcal{M}_{g}^{0} is actually a subset of the full moduli space of flat connections).

- prove Forman's theorem [8, Theorem 1] that Wilson loop expectations in the quantum Yang-Mills theory converges to the corresponding symplectic integrals.

We will keep things as self-contained as reasonably possible and no knowledge of the moduli space of flat connections is actually necessary to understand the technical content of this paper. Indeed we shall work with a standard realization of \mathcal{M}_{g}^{0} as a finite-dimensional manifold. Our proof has two main ingredients:
(i) a determinant identity (Proposition 1);
(ii) careful accounting of certain dense subsets of full measure in the moduli space \mathcal{M}_{g}^{0} where nice properties hold.

Witten $[24,25]$ determined the symplectic volume of the moduli space of flat connections in several different ways. One way involves the limit of the partition function of the quantum Yang-Mills theory over the surface. It is this approach, involving the heat-kernel on the structure (gauge) group, that we follow here. Forman used this approach and Witten's volume formula to prove the convergence of the Wilson loop expectations. Liu [15,16] used Forman's approach along with other ideas to study the symplectic volume and related integrals. We refer to the collection [23], and the bibliography therein, for other works concerning the symplectics of the moduli space of flat connections.

In the present paper we restrict our attention to the moduli space of flat connections without distinguishing between bundles of different topological type. The methods used here should extend to bundles of specified topology and also to the case of surfaces with boundary but this is not carried out here.

The limiting result we prove can be reformulated to give the limit of the discrete YangMills measure for cell-complexes but we do not describe how this is done and deal only with the case where the surface of genus g is obtained by appropriate pasting of one-cell on the boundary of a single two-cells. (The method is described in the proof of [18, Lemma 8.5].)

We use, in several places, the existence of appropriate dense subsets. We give either proofs or exact references to proofs, when we state or use such density results. It is widespread practice in the literature on this subject to state or use without clear justification results concerning certain subsets of the moduli space of flat connections which
are assumed to be dense and, implicitly, of full measure. But much of the technical difficulty in proving the volume formula lies in taking proper account of such subsets (which need also to be of full measure) and so we have strived to be careful about this issue. (I am thankful to the anonymous referee for stressing the necessity of having sets of full measure.)

1.2. Statement of results

We work with a compact, connected, semisimple Lie group G, whose Lie algebra $L G$ is equipped with an Ad-invariant inner-product. The heat-kernel on G is a function $Q_{t}(x)$, for $t>0$ and $x \in G$, satisfying the heat equation $\partial Q_{t}(x) / \partial t=(1 / 2) \Delta_{G} Q_{t}(x)$, where Δ_{G} is the Laplacian on G, and the initial condition $\lim _{t \downarrow 0} \int_{G} f(x) Q_{t}(x) \mathrm{d} x=f(e)$ for every continuous function f on G, where e is the identity in G and $\mathrm{d} x$ the Haar measure on G of unit total mass $\int_{G} \mathrm{~d} x=1$.

For any integer $g \geq 1$, let $K_{g}: G^{2 g} \rightarrow G$ be the product commutator map given by

$$
\begin{equation*}
K_{g}: G^{2 g} \rightarrow G:\left(a_{1}, b_{1}, \ldots, a_{g}, b_{g}\right) \mapsto b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \cdots b_{1}^{-1} a_{1}^{-1} b_{1} a_{1} \tag{2}
\end{equation*}
$$

The subset $K_{g}^{-1}(e)$, where e is the identity in G, of $G^{2 g}$ will be of special interest to us. The group G acts by conjugation on $G^{2 g}$. If $A \subset G^{2 g}$ is preserved by this action, denote by A^{0} the set of all points on A where the isotropy is $Z(G)$, the center of G. The quotient

$$
\begin{equation*}
\mathcal{M}_{g}=\frac{K_{g}^{-1}(e)}{G} \tag{3}
\end{equation*}
$$

is identifiable in a standard way with the moduli space of flat G-connections over a closed, connected, oriented two-dimensional manifold of genus g, but we shall not need any detail of this (see (A.13) in Appendix A). The subset

$$
\begin{equation*}
\mathcal{M}_{g}^{0}=\frac{K_{g}^{-1}(e)^{0}}{G} \tag{4}
\end{equation*}
$$

(when non-empty) has a manifold structure and on \mathcal{M}_{g}^{0} there is a natural symplectic form $\bar{\Omega}$. Let $\operatorname{vol}_{\bar{\Omega}}$ be the volume form corresponding to this symplectic structure; i.e. $\operatorname{vol}_{\bar{\Omega}}=$ $(1 / d!) \bar{\Omega}^{d / 2}$, where $d=\operatorname{dim} \mathcal{M}_{g}^{0}$.

Our main result is the following theorem.
Theorem 1. Suppose $g \geq 2$. Let f be a continuous G-conjugation-invariant function on $G^{2 g}$, and \tilde{f} the function induced on $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e)^{0} / G$. Then

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\frac{\operatorname{vol}(G)^{2-2 g}}{|Z(G)|} \int_{\mathcal{M}_{g}^{0}} \tilde{f} \mathrm{~d} \operatorname{vol}_{\bar{\Omega}} \tag{5}
\end{equation*}
$$

where the integration on the left is with respect to unit-mass Haar measure, the integration on the right is with respect to the symplectic volume measure, $|Z(G)|$ is the number of elements in the center $Z(G)$ of G, and $\operatorname{vol}(G)$ is the volume of G with respect to the Riemannian structure on G given by the $A d$-invariant metric on $L G$.

The integral on the left in (5) arises from integration with respect to the Yang-Mills measure in the Euclidean quantum field theory of the Yang-Mills field on a compact oriented surface of genus g. We shall not need this, but a rapid account is given in Appendix A; for more details see [17] or the review [23].

Setting $f=1$ leads, after some computation (detailed in (42)) to Witten's formula [24, formula (4.72)] for the symplectic volume of the moduli space \mathcal{M}_{g}^{0} :

$$
\begin{equation*}
\operatorname{vol}_{\bar{\Omega}}\left(\mathcal{M}_{g}^{0}\right)=|Z(G)| \operatorname{vol}(G)^{2 g-2} \sum_{\alpha} \frac{1}{(\operatorname{dim} \alpha)^{2 g-2}} \tag{6}
\end{equation*}
$$

where α runs over all irreducible representations of G.
In essence, Eq. (5) for $f=1$ is one of the approaches used by Witten [24] to determine the volume of the moduli space.

For general f, Theorem 1 was proved by Forman [8] using Witten's volume formula (in fact, this is also what we shall do, but we shall also prove the volume formula (6)). For $G=S U(2)$ and $S O(3)$, the result was proved in [21].

What we shall prove in this paper is actually the limit formula:

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)^{0}} \frac{f(x)}{\left|\mathrm{d} K_{g}(x)^{*}\right|} \mathrm{d} \operatorname{vol}(x), \tag{7}
\end{equation*}
$$

for any continuous function f on $G^{2 g}$, where the linear map $\mathrm{d} K_{g}(x)^{*}: L G \rightarrow(L G)^{2 g}$ is the adjoint of the derivative $(L G)^{2 g} \rightarrow L G: H \mapsto K_{g}(x)^{-1} K_{g}^{\prime}(x)(x H)$, and d vol is Riemannian volume measure on the submanifold $K_{g}^{-1}(e)^{0} \subset G^{2 g}$. The known result (34) then implies (5).

The main difficulty in proving (7) lies in taking proper care of the critical points of K_{g} and it is to this technical issue that most of the work in this paper is devoted.

Now we give a quick definition of the symplectic structure $\bar{\Omega}$. It will be useful to think of $G^{2 r}$ as a subset of $G^{4 r}$ via the map

$$
\Phi: G^{2 r} \rightarrow G^{4 r}:\left(a_{1}, b_{1}, \ldots, a_{r}, b_{r}\right) \mapsto\left(a_{1}, b_{1}, a_{1}^{-1}, b_{1}^{-1}, \ldots, a_{r}, b_{r}, a_{r}^{-1}, b_{r}^{-1}\right)
$$

For any $1 \leq i \leq 4 r$, and $x \in G^{4 r}$, we write

$$
f_{i}=\operatorname{Ad}\left(x_{i-1}, \ldots, x_{1}\right): L G \rightarrow L G
$$

with f_{1} being the identity map. Next let $\tilde{\Omega}$ be the two-form on $G^{4 r}$ specified by

$$
\tilde{\Omega}_{x}\left(x H, x H^{\prime}\right)=\frac{1}{2} \sum_{1 \leq i, j \leq 4 r} \epsilon_{i j}\left\langle f_{i-1}^{-1} H_{i}, f_{j-1}^{-1} H_{j}^{\prime}\right\rangle_{L G}
$$

where $H=\left(H_{1}, \ldots, H_{4 r}\right), H^{\prime}=\left(H_{1}^{\prime}, \ldots, H_{4 r}^{\prime}\right) \in(L G)^{4 r}$, and $\epsilon_{i j}$ is equal to 1 for $i<j$, is equal to -1 if $i>j$, and is 0 if $i=j$. Finally, define

$$
\begin{equation*}
\Omega=\Phi^{*} \tilde{\Omega}, \quad \text { a two-form on } G^{2 r} . \tag{8}
\end{equation*}
$$

The quotient space $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e)^{0} / G$, if non-empty, has a unique smooth manifold structure for which the quotient map $q: K_{g}^{-1}(e)^{0} \rightarrow K_{g}^{-1}(e)^{0} / G$ is a submersion. The restriction
of Ω to $K_{g}^{-1}(e)^{0}$ drops down to a two-form $\bar{\Omega}$ on $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e)^{0} / G$:

$$
\begin{equation*}
q^{*} \bar{\Omega}=\Omega \mid K_{g}^{-1}(e)^{0} \tag{9}
\end{equation*}
$$

It was shown in [11,12] (with more details in [19]) that $\bar{\Omega}$ is a symplectic form on \mathcal{M}_{g}^{0}, and, as proved in [19] is induced by Marsden-Weinstein-style from the Atiyah-Bott symplectic structure [1] on the space of all connections.

1.3. Other remarks

We take this opportunity to correct in this paper Corollary 3.2 and Lemma 4.4(ii) of [22]. The correct forms involve sets of full measure and we have stated the correct result here as Proposition 7. It is this form, using sets of full measure, which is useful both for the results of Sengupta [22] and for our results here. I am very grateful to an anonymous referee for pointing out this error which was present in an earlier version of this paper.

It should be noted that what we compute is the volume of \mathcal{M}_{g}^{0} and not of the full moduli space \mathcal{M}_{g}. The latter is not, in general, a smooth manifold but is believed to be the union of symplectic manifolds, called symplectic strata, of different dimensions, these manifolds corresponding to the different isotropy groups for the action of G on $K_{g}^{-1}(e)$. Volumes of all the strata have been calculated for $G=S U(2)$ and $S O(3)$ [21].

2. Summary of technical tools

In this section we collect together some results, proved elsewhere, which we will need.

2.1. A determinant identity

Let V and W be finite-dimensional real inner-product spaces, and $A: V \rightarrow W$ a linear map. If $A: V \rightarrow W(\neq 0)$ is a linear isomorphism onto its image $A(V)$, then by the determinant of A we shall mean
$\operatorname{det} A=$ the determinant of a matrix of A relative to orthonormal bases in V and $A(V)$.

If $\operatorname{ker}(A) \neq\{0\}$, or if $V=\{0\}$, then we $\operatorname{define} \operatorname{det}(A)=0$.
Thus $\operatorname{det} A$ is determined up to a sign ambiguity, and $|\operatorname{det} A|$ is independent of the choice of bases.

Let $A: V \rightarrow W$ and $B: W \rightarrow Z$ be linear maps between finite-dimensional inner-product spaces. If A is an isomorphism onto W or if B is an isometry (in which case $|\operatorname{det} B|=1$ unless $W=\{0\}$) then

$$
\begin{equation*}
|\operatorname{det}(B A)|=|\operatorname{det}(B)||\operatorname{det}(A)| . \tag{11}
\end{equation*}
$$

Consideration of matrices shows that

$$
\operatorname{det}\left(A \mid(\operatorname{ker} A)^{\perp}\right)=\operatorname{det}\left(A^{*} \mid \operatorname{Im} A\right)
$$

The following is a slightly sharpened form of Proposition 2.1 of [22]. (It is this sharper statement which was used in [22].)

Proposition 1. Let $X, Y(\neq\{0\})$ be finite-dimensional real vector spaces equipped with inner-products, and let V be a subspace of X, and Z a subspace of Y. Let $L_{1}: X \rightarrow Z$ and $L_{2}: X \rightarrow Y$ be linear maps such that

$$
\begin{equation*}
L_{1} \mid V^{\perp}=0 \quad \text { and } \quad L_{2} \mid V=0 \tag{12}
\end{equation*}
$$

Let

$$
\begin{equation*}
L=L_{1}+L_{2}, \tag{13}
\end{equation*}
$$

and $N=\operatorname{ker}(L)$. Then:
(i) there exists a

$$
\begin{array}{ll}
\text { unitary isomorphism } \quad I: N \oplus N^{\perp} \rightarrow V \oplus V^{\perp} \quad \text { and } a \\
\text { linear isomorphism } & J: Z \oplus Y \rightarrow Z \oplus Y \text { with }|\operatorname{det} J|=1,
\end{array}
$$

such that

$$
\begin{equation*}
J\left(\left(L_{1} \mid V\right) \oplus\left(L_{2} \mid V^{\perp}\right)\right) I=\left(L_{1} \mid N\right) \oplus\left(L \mid N^{\perp}\right) \tag{14}
\end{equation*}
$$

(ii) The maps $L_{1} \mid V: V \rightarrow Z$ and $L_{2} \mid V^{\perp}: V^{\perp} \rightarrow Y$ are both surjective if and only if $L_{1} \mid N: N \rightarrow Z$ and $L \mid N^{\perp}: N^{\perp} \rightarrow Y$ are both surjective.
(iii) The following equality of determinants holds:

$$
\begin{equation*}
\left|\operatorname{det} L_{1}^{*}\right|\left|\operatorname{det} L_{2}^{*}\right|=\left|\operatorname{det}\left(L_{1} \mid N\right)^{*}\right|\left|\operatorname{det} L^{*}\right| . \tag{15}
\end{equation*}
$$

Here $L_{1}^{*}: Z \rightarrow X, L_{2}^{*}: Y \rightarrow X,\left(L_{1} \mid N\right)^{*}: Z \rightarrow N$ and $L^{*}: Y \rightarrow X$.

Since the statement is slightly sharper than the one in [22] (where this sharper form is used) we include the full proof, though it is almost identical to that given in [22].

Proof.

(i) Let

$$
I: N \oplus N^{\perp} \rightarrow V \oplus V^{\perp}:(a, b) \mapsto\left((a+b)_{V},(a+b)_{V^{\perp}}\right)
$$

wherein the subscripts signify orthogonal projections onto the corresponding subspaces. Since $N \oplus N^{\perp} \simeq X \simeq V \oplus V^{\perp}$ isometrically, by means of $(x, y) \mapsto$ $x+y, I$ corresponds to the identity map on X and is thus a unitary isomorphism.

Let $L^{l}: Y \rightarrow N^{\perp} \subset X$, be a linear left-inverse for the injective map L / N^{\perp}; thus $L^{l} L(b)=b$ for every $b \in N^{\perp}$. Next define

$$
J=J_{2} J_{1}: Z \oplus Y \rightarrow Z \oplus Y
$$

where

$$
\begin{aligned}
& J_{1}: Z \oplus Y \rightarrow Z \oplus Y:(a, b) \mapsto J_{1}(a, b)=(a, a+b), \\
& J_{2}: Z \oplus Y \rightarrow Z \oplus Y:(a, b) \mapsto J_{2}(a, b)=\left(a-L_{1} L^{l} b, b\right) .
\end{aligned}
$$

It is clear that both J_{1} and J_{2} are injective. Moreover, they are also surjective, because for any $(z, y) \in Z \oplus Y, J_{1}(z, y-z)=(z, y)$ and $J_{2}\left(z+L_{1} L^{l} y, y\right)=(z, y)$; note that $z+L_{1} L^{l} y \in Z$ because $L_{1}(X) \subset Z$. So J_{1} and J_{2} are isomorphisms and hence so is J.

By considering matrix representations for J_{1} and J_{2}, we have $\left|\operatorname{det} J_{1}\right|=\left|\operatorname{det} J_{2}\right|=1$, and so

$$
\begin{equation*}
|\operatorname{det} J|=\left|\operatorname{det} J_{2}\right|\left|\operatorname{det} J_{1}\right|=1 \tag{16}
\end{equation*}
$$

For any $(a, b) \in N \oplus N^{\perp}$, we have:

$$
\begin{aligned}
& J\left(\left(L_{1} \mid V\right) \oplus\left(L_{2} \mid V^{\perp}\right)\right) I(a, b) \\
& \quad=J\left(L_{1}(a+b)_{V}, L_{2}(a+b)_{V^{\perp}}\right)=J\left(L_{1}(a+b), L_{2}(a+b)\right) \\
& \quad=J_{2}\left(L_{1}(a+b), L(a+b)\right)=J_{2}\left(L_{1}(a+b), L(b)\right) \\
& \quad=\left(L_{1}(a+b)-L_{1} L^{l} L(b), L(b)\right)=\left(L_{1}(a), L(b)\right)
\end{aligned}
$$

This proves Eq. (14), and part (i).
(ii) Follows directly from (i).
(iii) Since $L_{1} \mid V^{\perp}=0$ it follows that $L_{1}^{*}(Z) \subset V$. Similarly, $L_{2}^{*}(Y) \subset V^{\perp}$ and $L^{*}(Y) \subset$ N^{\perp}. So, with appropriately restricted codomains (for instance we are taking $L_{1}^{*}: Z \rightarrow$ V instead of $\left.L_{1}^{*}: Z \rightarrow X\right)$:

$$
\left(L_{1} \mid V\right)^{*}=L_{1}^{*}, \quad\left(L_{2} \mid V^{\perp}\right)^{*}=L_{2}^{*}, \quad\left(L \mid N^{\perp}\right)^{*}=L^{*}
$$

In view of this, we may take adjoints in Eq. (14) to obtain:

$$
I^{*}\left(L_{1}^{*} \oplus L_{2}^{*}\right) J^{*}=\left(L_{1} \mid N\right)^{*} \oplus L^{*} \quad \text { as maps } Z \oplus Y \rightarrow N \oplus N^{\perp}
$$

wherein again some of the operators are taken with restricted codomains. Taking determinants (which, by our definition, is not affected by restriction of codomains), and using the determinant of products given in (11), and the fact that $|\operatorname{det} J|$ is equal to 1 , we obtain the determinant formula (15).

We will use the preceding proposition in a specific context. Let G be a compact, connected, semisimple Lie group with Lie algebra $L G$ equipped with an Ad-invariant metric. Let g_{1} and g_{2} be positive integers, and $g=g_{1}+g_{2}$. We have the product commutator maps $K_{g_{i}}: G^{2 g_{i}} \rightarrow G$ and $K_{g}: G^{2 g} \rightarrow G$ specified through (2). Let $x_{i} \in G^{2 g_{i}}$ and $x=\left(x_{1}, x_{2}\right)$. Define

$$
C_{1}: G^{2 g} \rightarrow G:\left(x_{1}, x_{2}\right) \mapsto K_{g_{1}}\left(x_{1}\right), \quad C_{2}: G^{2 g} \rightarrow G:\left(x_{1}, x_{2}\right) \mapsto K_{g_{2}}\left(x_{2}\right) .
$$

Then $K_{g}(x)=C_{2}(x) C_{1}(x)$ and we have the derivative maps

$$
K_{g}(x)^{-1} \mathrm{~d} K_{g}(x): T_{x} G^{2 g} \rightarrow L G, \quad C_{i}(x)^{-1} \mathrm{~d} C_{i}(x): T_{x} G^{2 g} \rightarrow L G,
$$

which are related by

$$
K_{g}(x)^{-1} \mathrm{~d} K_{g}(x)=C_{1}(x)^{-1} \mathrm{~d} C_{1}(x)+\operatorname{Ad}\left(C_{1}(x)^{-1}\right) C_{2}(x)^{-2} \mathrm{~d} C_{2}(x) .
$$

We will apply Proposition 1 with

$$
X-(L G)^{2 g} \simeq(L G)^{2 g_{1}} \oplus(L G)^{2 g_{2}}, \quad V=(L G)^{2 g_{1}} \oplus 0
$$

and

$$
L_{1}=C_{1}(x)^{-1} \mathrm{~d} C_{1}(x), \quad L_{2}=\operatorname{Ad}\left(C_{1}(x)^{-1}\right) C_{2}(x)^{-1} \mathrm{~d} C_{2}(x) .
$$

Specializing Proposition 1 to this situation gives us the following proposition.
Proposition 2. Let $x=\left(x_{1}, x_{2}\right) \in G^{2 g_{1}} \times G^{2 g_{2}}$. Then $K_{g_{i}}$ is submersive at x_{i}, for both $i=1$ and $i=2$, if and only if K_{g} is submersive at x and $C_{1} \mid K_{g}^{-1}(e): K_{g}^{-1}(e) \rightarrow G$ is submersive at x. Furthermore

$$
\begin{align*}
& \left|\operatorname{det} \mathrm{d} K_{g}(x)^{*}\right|\left|\operatorname{det}\left[\mathrm{d} C_{1}(x) \mid \operatorname{ker~d} K_{g}(x)\right]^{*}\right| \\
& \quad=\left|\operatorname{det} \mathrm{d} C_{1}(x)^{*}\right|\left|\operatorname{det} \mathrm{d} C_{2}(x)^{*}\right|=\left|\operatorname{det} \mathrm{d} K_{g_{1}}\left(x_{1}\right)^{*}\right|\left|\operatorname{det} \mathrm{d} K_{g_{2}}\left(x_{2}\right)^{*}\right| . \tag{17}
\end{align*}
$$

2.2. A disintegration formula

The following disintegration formula, proved in Proposition 3.1 of [22] will be useful. (The formula (19) is proved for vastly more general K by Federer [7].)

Proposition 3. Let $K: M \rightarrow N$ be a smooth mapping between Riemannian manifolds. Let $N_{K}=K\left(M \backslash C_{K}\right)$, where C_{K} is the set of points where K is not submersive, i.e. the rank of $\mathrm{d} K$ is less than $\operatorname{dim} N$. Assume that $C_{K} \neq M$. Suppose ϕ is a continuous function of compact support on M. Let vol denote Riemannian volume measure. (For example, on the submanifold $K^{-1}(h) \backslash C_{K} \subset M$, for $h \in N_{K}$, which is given the metric induced from M. If $\operatorname{dim} K^{-1}(h)=0$, the Riemannian volume is understood to be counting measure.)

If ϕ vanishes in a neighborhood of C_{K}, then

$$
\begin{equation*}
h \mapsto \int_{K^{-1}(h) \backslash C_{K}} \phi \mathrm{~d} \text { vol is continuous on } N_{K}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M} \phi \mathrm{dvol}=\int_{N_{K}}\left[\int_{K^{-1}(h) \backslash C_{K}} \frac{\phi}{\left|\operatorname{det}(\mathrm{~d} K)^{*}\right|} \mathrm{d} \operatorname{vol}\right] \mathrm{d} \operatorname{vol}(h) . \tag{19}
\end{equation*}
$$

In our application, every open subset U of M can be expressed as the union of a sequence of open subsets U_{n} with compact closure, and there is a sequence of continuous functions $0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq \phi_{n} \uparrow 1_{U}$, where ϕ_{n} is 0 outside U_{n}. Then, for f any continuous non-negative function on M, using $\phi_{n} f$ in place of f in (19), and letting $n \rightarrow \infty$, monotone convergence shows that (19) holds for $f 1_{U}$ in place of ϕ, if U is any open subset of $M \backslash C_{K}$. In particular, (19) holds for 1_{U} in place of ϕ and hence, if $\operatorname{vol}(M)<\infty$, also for 1_{U-V} for any open sets $U, V \subset M \backslash C_{K}$.

2.3. Some dense sets of full measure

We shall describe some useful subsets which are dense and of full measure in appropriate sets.

The group G acts by conjugation on $G^{2 r}$:

$$
\begin{equation*}
G \times G^{24} \rightarrow G^{2 r}:(h, x) \mapsto h x h^{-1}=\left(h x_{1} h^{-1}, \ldots, h x_{2 r} h^{-1}\right), \tag{20}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{2 r}\right)$.
Semisimplicity of the compact group G (i.e. that the center G is finite) is important in the following. We equip G with an Ad-invariant metric.

Proposition 4. Let G be a compact, connected, semisimple Lie group and T a maximal torus in G, acting on G by conjugation. Then the set of points in G where the isotropy is $Z(G)$ is an open set of full measure.

By "full measure" we mean a measurable set whose complement has measure zero. In particular, an open set of full measure is automatically dense since the measures under consideration assign positive measure to non-empty open sets.

Proof. Under the adjoint action of the compact abelian group T, the Lie algebra $L G$ splits up as a direct sum of $L T$ and two-dimensional spaces R_{1}, \ldots, R_{k} on each of which T acts by 'rotations'.

The compact Lie group G, equipped with the Ad-invariant metric on the Lie algebra $L G$, is a complete Riemannian manifold. We shall use a result concerning the exponential map for such manifolds.

For each unit vector $u \in L G$ let $\delta(u)$ be the infimum of all real numbers $r>0$ such that the distance of $\exp (r u)$ from the identity e is r. Now let B be the subset of $L G$ consisting of 0 and all $v \neq 0$ such that $|v|<\delta(v /|v|)$, and let $W=\exp (B)$. Then it is known (see, for instance [5, Theorem 3.2 and Proposition 3.1]) that B is open, W is an open set of full measure in G, and

$$
\begin{equation*}
B \rightarrow W: v \mapsto \exp (v) \text { is a diffeomorphism onto } W \tag{21}
\end{equation*}
$$

For any $t \in T$, the conjugation map $G \rightarrow G: x \mapsto t x t^{-1}$ is an isometric isomorphism and so the function δ is invariant under the adjoint action of T on $L G$. Therefore, $\operatorname{Ad}(t) B=B$ for all $t \in B$.

Let

$$
\begin{equation*}
W^{0}=\exp \left(W^{\prime}\right) \tag{22}
\end{equation*}
$$

where W^{\prime} is the subset of B consisting of all points of the form $v=v_{L T}+v_{1}+\cdots+v_{k}$, with $v_{L T} \in L T$ and each $v_{i} \in R_{i}$ being non-zero:

$$
\begin{equation*}
W^{\prime}=\left\{v_{L T}+v_{1}+\cdots+v_{k} \mid v_{L T} \in L T, \text { each } v_{i} \in R_{i} \text { and } v_{i} \neq 0\right\} \tag{23}
\end{equation*}
$$

Suppose $t \in T$ commutes with $x \in W^{0}$. We know that $x=\exp (v)$ for a unique $v \in W^{\prime}$. Moreover, since \exp is injective on B and $\operatorname{Ad}(t) v \in B$, the relation $t x t^{-1}=x$ implies that
$\operatorname{Ad}(t) v=v$. Since $\operatorname{Ad}(t)$ preserves each subspace R_{i}, whose direct sum along with $L T$ is $L G$, it follows that $\operatorname{Ad}(t) v_{i}=v_{i}$ for each $i \in\{1, \ldots, k\}$. Since T acts on the two-dimensional spaces R_{i} by rotations and fixes the non-zero vector v_{i}, this means that in fact $\operatorname{Ad}(t)$ is actually the identity on each R_{i}. Therefore, $\operatorname{Ad}(t)$ is the identity on all of $L G$ and so $t \in$ $Z(G)$. Thus the T-isotropy at each point of W^{0} is $Z(G)$. Now W^{\prime} is clearly an open subset of full measure in B, and so, since exp is a diffeomorphism on B, it follows that W^{0} is a subset of full measure in W. Since W is of full measure in G, we conclude that W^{0} is of full measure in G.

By a general result of transformation group theory [2, IX.96, No. 4, Theorem 2; 3, Theorem 4.3.1 and Corollary 6.2.5; 10, Theorem 4.27] for compact Lie groups acting on connected manifolds, the set of points of minimal isotropy is (dense and) open in the whole space.

We apply this to show that the conjugation action of G on G^{r} has minimal isotropy $Z(G)$ on a set of full measure.

Proposition 5. Let G be a compact, connected, semisimple Lie group, and k any integer ≥ 2. For the conjugation action of G on G^{k}, the subset on which the isotropy group is $Z(G)$ is a dense open set of full measure in G.

Proof. As noted earlier, the set of points of minimal isotropy (for a compact Lie group acting on a connected manifold) is open, being a consequence of a general result on transformation groups [2, IX.96, No. 4, Theorem 2]. So we focus on the measure theoretic issue.

Since $G^{k}=G^{2} \times G^{k-2}$, it will suffice to prove the result for $k=2$. Let U be the subset of G^{2} consisting of all points where the isotropy group of the conjugation action of G is $Z(G)$. The subset G_{0} of G which consists of points which generate maximal tori is of full measure in G (see, for example, [4, Theorem IV.2.11(ii)]). If $x \in G_{0}$ then the preceding lemma implies that for almost every $y \in G$ the isotropy group at (x, y) is $Z(G)$ (any element which commutes with x lies in the maximal torus generated by x; see, for example [4, Theorem IV.2.3(i)]). So, by Fubini's theorem, $\left(G_{0} \times G\right) \cap U$ is of full measure in G^{2}. So U is of full measure in G^{2}.

The preceding result has the following consequence.
Proposition 6. For any integer $r \geq 1$ and compact, connected semisimple group G, the critical points of the mapping $K_{r}: G^{2 r} \rightarrow G$ form a set of measure 0 in $G^{2 r}$.

Proof. There is a remarkable relationship, stated in (32), between the derivative $\mathrm{d} K_{r}$ and the isotropy of the conjugation action of G on $G^{2 r}$. The relation (32) implies that at any critical point x of K_{r} the isotropy group $\left\{g \in G: g x g^{-1}=x\right\}$ has a non-trivial Lie algebra, and so, in particular, the isotropy group is not equal to $Z(G)$. The preceding proposition then implies that the set of critical points of K_{r} is contained in a set of measure 0 .

Next we show that almost every point on almost every level set $K_{r}^{-1}(h)$ is a point of isotropy $Z(G)$. For this we use the important fact that the product commutator map K_{r} :
$G^{2 r} \rightarrow G$ is surjective. This is proved in [20, Proposition 4.2.4] and uses semisimplicity of G (as I learnt later, this result also appears in [2, Lie IX. 33 Corollaire to Proposition 10]).

Proposition 7. For any integer $r \geq 1$, let \mathcal{U}_{r}^{0} be the subset of $G^{2 r}$ where the isotropy of the conjugation action of G is $Z(G)$. Then for almost every $h \in G$ the set $K_{r}^{-1}(h) \cap \mathcal{U}_{r}^{0}$ is of full measure in $K_{r}^{-1}(h)$.

Proof. Let \mathcal{U}_{r} be the set of all non-critical points of K_{r}. Then

$$
\begin{equation*}
\mathcal{U}_{r}^{0} \subset \mathcal{U}_{r} \tag{24}
\end{equation*}
$$

because of the striking relation (32) between the behavior of $\mathrm{d} K_{r}$ and the isotropy of the conjugation action. The mapping $K_{r} \mid \mathcal{U}_{r}: \mathcal{U}_{r} \rightarrow G$ is an open mapping. We have the co-area/disintegration formula giving the volume of any open set $A \subset \mathcal{U}_{r}$:

$$
\begin{equation*}
\operatorname{vol}(A)=\int_{K_{r}\left(\mathcal{U}_{r}\right)}\left[\int_{K_{r}^{-1}(h) \cap A} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det}\left(\mathrm{~d} K_{r}\right)^{*}\right|}\right] \mathrm{d} \text { vol, } \tag{25}
\end{equation*}
$$

where vol always denotes Riemannian volume arising, in our situation, from any choice of Ad-invariant metric on G. Since $\operatorname{vol}\left(G^{2 r}\right)<\infty$, the formula (25) holds when A is the difference of open sets. Taking A to be the set $\mathcal{U}_{r}-\mathcal{U}_{r}^{0}$ of measure 0 , it follows that for almost every $h \in K_{r}\left(\mathcal{U}_{r}\right)$ the set $K_{r}^{-1}(h) \cap \mathcal{U}_{r}^{0}$ is of full measure in $K_{r}^{-1}(h) \cap \mathcal{U}_{r}$. Now $K_{r}\left(\mathcal{U}_{r}\right)$ contains all regular values of K_{r} : here we use the surjectivity of K_{r} which assures that every regular value of K_{r} is in fact a value of K_{r}. Moreover, by Sard's theorem, the set of all regular values of K_{r} is a set of full measure in G, and, furthermore, note that $K_{r}^{-1}(h) \subset \mathcal{U}_{r}$ for any regular value h of K_{r}. Thus almost every point $h \in G$ satisfies the condition that $K_{r}^{-1}(h) \cap \mathcal{U}_{r}^{0}$ is of full measure in $K_{r}^{-1}(h) \cap \mathcal{U}_{r}=K_{r}^{-1}(h)$.

Using the notation from the preceding result we also have the following proposition.
Proposition 8. For $g_{1}, g_{2} \geq 1$ and $g=g_{1}+g_{2}$, let

$$
\begin{equation*}
K_{g}^{-1}(e)^{0,0}=\left(\mathcal{U}_{g_{1}}^{0} \times \mathcal{U}_{g_{2}}^{0}\right) \cap K_{g}^{-1}(e) \tag{26}
\end{equation*}
$$

and let $C_{i}: G^{2 g_{1}} \times G^{2 g_{2}} \rightarrow G:\left(x_{1}, x_{2}\right) \mapsto K_{g_{i}}\left(x_{i}\right)$,for $i \in\{1,2\}$. Then $K_{g}^{-1}(e)^{0,0}$ is not empty and the set

$$
\begin{equation*}
U_{12} \stackrel{\text { def }}{=} C_{1}\left(K_{g}^{-1}(e)^{0,0}\right)=C_{2}\left(K_{g}^{-1}(e)^{0,0}\right)=K_{g_{1}}\left(\mathcal{U}_{g_{1}}^{0}\right) \cap K_{g_{2}}\left(\mathcal{U}_{g_{2}}^{0}\right), \tag{27}
\end{equation*}
$$

is a dense open subset of full measure in G.
Proof. Let D_{i} be the set of all regular values of $K_{g_{i}}$. If $h \in D_{i}$ is in the complement of $K_{g_{i}}\left(\mathcal{U}_{g_{i}}^{0}\right)$ then $K_{g_{i}}^{-1}(h) \cap \mathcal{U}_{g_{i}}^{0}=\emptyset$, while, by surjectivity of $K_{g_{i}}$, the level set $K_{g_{i}}^{-1}(h)$ is a non-empty closed submanifold of $G^{2 g_{i}}$ and so has positive volume. So by the preceding result, the set of all such elements h has measure 0 . Thus $K_{g_{i}}\left(\mathcal{U}_{g_{i}}^{0}\right) \cap D_{i}$ is of full measure in D_{i}. By Sard's theorem, D_{i} is a set of full measure in G, and so $K_{g_{i}}\left(\mathcal{U}_{g_{i}}^{0}\right)$ has full measure in G. Since $K_{g_{i}}$ is submersive on $\mathcal{U}_{g_{i}}^{0}$ it follows that the image $K_{g_{i}}\left(\mathcal{U}_{g_{i}}^{0}\right)$ is an open subset
of G. So the sets $K_{g_{i}}\left(\mathcal{U}_{g_{i}}^{0}\right)$, for $i \in\{1,2\}$, are open sets of full measure on G and hence so is their intersection

$$
U=K_{g_{1}}\left(\mathcal{U}_{g_{1}}^{0}\right) \cap K_{g_{2}}\left(\mathcal{U}_{g_{2}}^{0}\right)
$$

The relation

$$
\begin{equation*}
K_{r}\left(b_{r}, a_{r}, \ldots, b_{1}, a_{1}\right)=K_{r}\left(a_{1}, b_{1}, \ldots, a_{r}, b_{r}\right)^{-1} \tag{28}
\end{equation*}
$$

shows that

$$
K_{r}\left(\mathcal{U}_{r}^{0}\right)=K_{r}\left(\mathcal{U}_{r}^{0}\right)^{-1}
$$

and so

$$
U=U^{-1}
$$

Let $h \in U$. Then there is, for $i=1,2$, an $x_{i} \in \mathcal{U}_{g_{i}}^{0}$ with $K_{g_{1}}\left(x_{1}\right)=h$ and $K_{g_{2}}\left(x_{2}\right)=h^{-1}$. Then $x=\left(x_{1}, x_{2}\right)$ is a point in $K_{g}^{-1}(e)^{0,0}$ whose image under C_{1} is h and whose image under C_{2} is h^{-1}. This, together with the inversion property (28) implies

$$
C_{i}\left(K_{g}^{-1}(e)^{0,0}\right) \supset U
$$

for $i=1,2$.
Conversely, suppose $h \in C_{1}\left(K_{g}^{-1}(e)^{0,0}\right)$. This means that there is a point $\left(x_{1}, x_{2}\right) \in$ $K_{g}^{-1}(e)^{0,0}$ with $C_{1}\left(x_{1}, x_{2}\right)=h$. Since $K_{g}\left(x_{1}, x_{2}\right)=C_{2}\left(x_{2}\right) C_{1}\left(x_{1}\right)$, it follows that $C_{2}\left(x_{2}\right)=$ h^{-1}. The condition $\left(x_{1}, x_{2}\right) \in K_{g}^{-1}(e)^{0,0}$ says also that $x_{i} \in \mathcal{U}_{g_{i}}^{0}$, for $i=1,2$, and so $h \in$ $K_{g_{1}}\left(\mathcal{U}_{g_{1}}^{0}\right)$ and $h^{-1} \in K_{g_{2}}\left(\mathcal{U}_{g_{2}}^{0}\right)$. The inversion property (28) then implies that $h \in U$. The argument works if we start with $h \in C_{2}\left(K_{g}^{-2}(e)^{0,0}\right)$.

2.4. Facts about Ω and $\bar{\Omega}$

The compact, semisimple group G acts by conjugation on $G^{2 g}$. Let \mathcal{U}_{g}^{0} be the set of all points where the isotropy is $Z(G)$. Clearly, this is carried into itself by the conjugation action. Moreover, \mathcal{U}_{g}^{0} is a dense open subset of full measure in $G^{2 g}$, as we have shown.

Let $K_{g}^{-1}(e)^{0}=\mathcal{U}_{g}^{0} \cap K_{g}^{-1}(e)$, the set of points on $K_{g}^{-1}(e)$ where the isotropy group of the conjugation action of G is $Z(G)$, and assume that it is non-empty (Proposition 8 implies that this is so when $g \geq 2$).

Let $K_{g}^{-1}(e)_{0}$ be the set of points x in $K_{g}^{-1}(e)$ where K_{g} is submersive i.e. $\mathrm{d} K_{g}(x)$: $T_{x} G^{2 g} \rightarrow T_{K_{g}}(x) G$ is surjective. It is a consequence of Theorem 2(v) that $K_{g}^{-1}(e)^{0}$ is a subset of $K_{g}^{-1}(e)_{0}$.

Then $K_{g}^{-1}(e)^{0}$, being a level set of a smooth submersion $K_{g} \mid \mathcal{U}_{g}^{0}: \mathcal{U}_{g}^{0} \rightarrow G$, is a smooth submanifold of $G^{2 g}$.

The quotient

$$
\mathcal{M}_{g}^{0}=\frac{K_{g}^{-1}(e)^{0}}{G}
$$

being a quotient of a smooth manifold by a compact Lie group, having the same isotropy subgroup $Z(G)$ everywhere, is a smooth manifold (Sections 16.14 .1 and 16.10.3 in [6]).

The conjugation action of the group G on $G^{2 g}$, gives for any $x=\left(x_{1}, \ldots, x_{2 g}\right) \in G^{2 g}$ the orbit map

$$
\begin{equation*}
\gamma_{x}: G \rightarrow G^{2 g}: h \mapsto h x h^{-1}=\left(h x_{1} h^{-1}, \ldots, h x_{2 g} h^{-1}\right) \tag{29}
\end{equation*}
$$

The derivative at x of the product commutator map $K_{g}: G^{2 g} \rightarrow G$ is, technically, a map $T_{x} G^{2 g} \rightarrow T_{K_{g}(x)} G$, but by means of appropriate left translations to the identity we shall sometimes view it as a map $(L G)^{2 g} \rightarrow L G$ and sometimes as $(L G)^{2 g} \rightarrow T_{K_{g}(x)} G$. Its adjoint, relative to the given Ad-invariant metric on $L G$, is then a linear map

$$
\begin{equation*}
\mathrm{d} K_{g}(x)^{*}: L G \rightarrow(L G)^{2 g} \tag{30}
\end{equation*}
$$

Recall from (8) the two-form Ω on $G^{2 g}$.
We summarize some facts about Ω, γ, and K_{g}.
Theorem 2. Let $g \geq 1$ and assume that $K_{g}^{-1}(e)^{0}$ is not empty. Then:
(i) there is a unique smooth manifold structure on $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e)^{0} / G$ such that the quotient map $q: K_{g}^{-1}(e)^{0} \rightarrow K_{g}^{-1}(e)^{0} / G$ is a submersion;
(ii) there is a unique smooth two-form $\bar{\Omega}$ on $K_{g}^{-1}(e)^{0} / G$ such that $q^{*}(\bar{\Omega})=\Omega \mid K_{g}^{-1}(e)^{0}$;
(iii) the two-form $\bar{\Omega}$ is closed and non-degenerate, i.e. it is symplectic on \mathcal{M}_{g}^{0} (Proposition IV.E in [11] and [12, Proposition 3.3]);
(iv) Ω satisfies the "moment map" formula

$$
\begin{equation*}
\Omega_{x}\left(x Y, \gamma_{x}^{\prime} H\right)=\left\langle Y, \mathrm{~d} K_{g}(x)^{*} H\right\rangle_{(L G)^{2 g}} \tag{31}
\end{equation*}
$$

for all $x \in K_{g}^{-1}(e), H \in L G$ and $Y \in(L G)^{2 g}$ [11, Proposition IV.G];
(v) for any $x=\left(x_{1}, \ldots, x_{2 g}\right) \in G^{2 g}$, the kernel of $\gamma_{x}^{\prime}: L G \rightarrow(L G)^{2 g}$ is equal to the kernel of $\mathrm{d} K_{g}(x)^{*}: L G \rightarrow(L G)^{2 g}$:

$$
\begin{equation*}
\operatorname{ker} \gamma_{x}^{\prime}=\operatorname{kerd} K_{g}(x)^{*}=\left\{H \in L G: \operatorname{Ad}\left(x_{1}\right) H=\cdots=\operatorname{Ad}\left(x_{2 g}\right) H=H\right\} \tag{32}
\end{equation*}
$$

([11, Proposition IV.C] and also in [9]);
(vi) if $x \in K_{g}^{-1}(e)^{0}$ then

$$
\begin{equation*}
\left|\operatorname{Pfaff}\left(\bar{\Omega}_{q(x)}\right)\right|=\frac{\left|\operatorname{det} \gamma_{x}^{\prime}\right|}{\left|\operatorname{det} d K_{g}(x)^{*}\right|}, \tag{33}
\end{equation*}
$$

where the Pfaffian is, as usual, the square root of the determinant of the matrix of $\bar{\Omega}_{q(x)}$ relative to an orthonormal basis [12, Proposition 3.3];
(vii) iff is a measurable function on $K_{g}^{-1}(e)^{0}$, invariant under the conjugation action of G, and \tilde{f} the induced function on $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e)^{0} / G$ then

$$
\begin{equation*}
\int_{\mathcal{M}_{g}^{0}} \tilde{f} \mathrm{~d}^{\operatorname{vol}} \bar{\Omega}_{\bar{\Omega}}=\frac{1}{\operatorname{vol}(G / Z(G))} \int_{K_{g}^{-1}(e)^{0}} \frac{f}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \mathrm{d} \text { vol }, \tag{34}
\end{equation*}
$$

whenever either side is defined, where $\mathrm{vol}_{\bar{\Omega}}$ is symplectic volume for the symplectic structure $\bar{\Omega}$, while vol by itself always denotes Riemannian volume. (Essentially [12, Proposition 3.5] or by part (vi) and [22, Lemma 3.4].)

2.5. An application

We shall "prefabricate" a result that will go into the proof of Theorem 1.
Let g_{1}, g_{2} be positive integers and $g=g_{1}+g_{2}$. Let $K_{g}^{-1}(e)^{0,0}$ the subset of $K_{g}^{-1}(e)$ consisting of all points $\left(x_{1}, x_{2}\right) \in G^{2 g_{1}} \times G^{2 g_{2}}$ such that the isotropy of the G-conjugation action on $G^{g_{i}}$ is $Z(G)$ at x_{i}, for $i=1,2$. We have the maps $C_{i}: G^{2 g} \rightarrow G$ specified by

$$
C_{1}\left(x_{1}, x_{2}\right)=K_{g_{1}}\left(x_{1}\right), \quad C_{2}\left(x_{1}, x_{2}\right)=K_{g_{2}}\left(x_{2}\right)
$$

Recall from Proposition 8 (Eq. (27)) that

$$
U_{12} \stackrel{\text { def }}{=} C_{1}\left(K_{g}^{-1}(e)^{0,0}\right)=C_{2}\left(K_{g}^{-1}(e)^{0,0}\right)=K_{g_{1}}\left(\mathcal{U}_{g_{1}}^{0}\right) \cap K_{g_{2}}\left(\mathcal{U}_{g_{2}}^{0}\right),
$$

is an open subset of full measure in G.
Let D_{i} be the set of all regular values of $K_{g_{i}}$. By Sard's theorem, D_{i} is a subset of full measure in G. The maps $K_{g_{i}}$ being surjective, D_{i} is contained in the image of $K_{g_{i}}$. (The set D_{i} is also open in G.)

The inversion relation

$$
\begin{equation*}
K_{r}\left(b_{r}, a_{r}, \ldots, b_{1}, a_{1}\right)=K_{r}\left(a_{1}, b_{1}, \ldots, a_{r}, b_{r}\right)^{-1} \tag{35}
\end{equation*}
$$

implies that $D_{i}=D_{i}^{-1}$. Therefore,

$$
\begin{equation*}
D \stackrel{\text { def }}{=} D_{1} \cap D_{2}^{-1}, \tag{36}
\end{equation*}
$$

is also a subset of full measure in G.

Proposition 9. The following disintegration formula holds:

$$
\begin{align*}
& \int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \\
& \quad=\operatorname{vol}(G) \int_{D}\left[\int_{K_{g_{1}(h)}^{-1}} \frac{\mathrm{~d} \operatorname{vol}\left(x_{1}\right)}{\left|\operatorname{det} \mathrm{d} K_{g_{1}}\left(x_{1}\right)^{*}\right|}\right]\left[\int_{K_{g_{2}^{-1}\left(h^{-1}\right)}} \frac{\mathrm{d} \operatorname{vol}\left(x_{2}\right)}{\left|\operatorname{det} \mathrm{d} K_{g_{2}}\left(x_{2}\right)^{*}\right|}\right] d h, \tag{37}
\end{align*}
$$

where dh is the unit-mass Haar measure on G and $\operatorname{vol}(G)$ is the volume of G with respect to the given Ad-invariant metric on the Lie algebra of G.

Proof. Let \mathcal{U}_{r}^{0} be the subset of $G^{2 r}$ consisting of all points where the isotropy of the conjugation action of G is $Z(G)$. Then \mathcal{U}_{r}^{0} is a non-empty (in fact, dense) open subset of $G^{2 r}$ (this is a special case of a general theorem on group actions: [2, IX.96, No. 4, Theorem 2; 3, Theorem 4.3.1 and Corollary $6.2 .5 ; 10$, Theorem 4.27]). By Theorem 2(v), the map K_{g} : $G^{2 g} \rightarrow G$ is a submersion at every point in $\mathcal{U}_{g_{1}}^{0} \times \mathcal{U}_{g_{2}}^{0}$, and so, $K_{g}^{-1}(e)^{0,0}$, being a level set of a submersion, is a smooth submanifold of $G^{2 g}$.

From Proposition 2 it follows that $C_{1} \mid K_{g}^{-1}(e)^{0,0}$ is submersive at every point. Therefore, by the disintegration formula in Proposition 3, we have

$$
\begin{align*}
& \int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{detd} K_{g}^{*}\right|} \\
& \quad=\operatorname{vol}(G) \int_{U_{12}}\left[\int_{C_{1}^{-1}(h) \cap K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \mathrm{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|\left|\operatorname{det}\left(\mathrm{d} C_{1} \mid \operatorname{ker~d} K_{g}\right)^{*}\right|}\right] d h . \tag{38}
\end{align*}
$$

Next we use the determinant identity from Proposition 2 to obtain:

$$
\begin{align*}
& \int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \\
& \quad=\operatorname{vol}(G) \int_{U_{12}}\left[\int_{C_{1}^{-1}(h) \cap K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}\left(x_{1}, x_{2}\right)}{\left|\operatorname{det} \mathrm{d} K_{g_{1}}\left(x_{1}\right)^{*}\right|\left|\operatorname{det} \mathrm{d} K_{g_{2}}\left(x_{2}\right)^{*}\right|}\right] d h \tag{39}
\end{align*}
$$

Now the identity map

$$
C_{1}^{-1}(h) \cap K_{g}^{-1}(e)^{0,0} \rightarrow K_{g_{1}}^{-1}(h)^{0} \times K_{g_{2}}^{-1}\left(h^{-1}\right)^{0}:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, x_{2}\right)
$$

is an isometry (the metric on the left is inherited from that on $G^{2 g}$). So we have

$$
\begin{align*}
& \int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|} \\
& \quad=\operatorname{vol}(G) \int_{U_{12}}\left[\int_{K_{g_{1}}^{-1}(h)^{0}} \frac{\mathrm{~d} \operatorname{vol}\left(x_{1}\right)}{\left|\operatorname{det~d} K_{g_{1}}\left(x_{1}\right)^{*}\right|}\right]\left[\int_{K_{g_{2}\left(h^{-1}\right)^{0}}} \frac{\mathrm{~d} \operatorname{vol}\left(x_{2}\right)}{\left|\operatorname{det} \mathrm{d} K_{g_{2}}\left(x_{2}\right)^{*}\right|}\right] d h . \tag{40}
\end{align*}
$$

Since both U_{12} and D are subsets of full measure in G, the integration $\int_{U_{12}} \cdots d h$ above can be replaced by $\int_{D} \cdots d h$. Finally, by Proposition 7, the set $K_{g_{i}}^{-1}(c)^{0}$ is of full measure in $K_{g_{i}}^{-1}(c)$ for almost every c, and so we obtain the desired formula (37).

2.6. A heat-kernel integral and its limit

If X_{1}, \ldots, X_{d} is an orthonormal basis of the Lie algebra of G, and α an irreducible representation of G then $\sum_{i=1}^{d} \alpha_{*}\left(X_{i}\right)^{2}$ is of the form $-C_{\alpha} I$, where C_{α} is a scalar (Casimir) and I is the identity operator on the representation space of α. The heat-kernel Q_{t} has a standard character expansion:

$$
Q_{t}(x)=\sum_{\alpha}(\operatorname{dim} \alpha) \mathrm{e}^{-C_{\alpha} t / 2} \chi_{\alpha}(x)
$$

where χ_{α} is the character of the representation α.
The following is a very useful formula:

$$
\begin{equation*}
\int_{G^{2 g}} Q_{t}\left(h b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \cdots b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right) \mathrm{d} a_{1} \cdots \mathrm{~d} b_{g}=\sum_{\alpha} \frac{\mathrm{e}^{-C_{\alpha} t / 2} \chi_{\alpha}(h)}{(\operatorname{dim} \alpha)^{2 g-1}} \tag{41}
\end{equation*}
$$

where the sum is over all inequivalent irreducible representations α of G. This can be verified using: (i) the identity (see Example 4.17.3 in [4])

$$
\int_{G} \chi_{\alpha}\left(a b a^{-1} c\right) \mathrm{d} a=(\operatorname{dim} \alpha)^{-1} \chi_{\alpha}(b) \chi_{\alpha}(c),
$$

(ii) repeated application of standard convolution properties of characters, and (iii) commuting integral and a series sum. Integral and sum can be commuted because

$$
\sum_{\alpha} \mathrm{e}^{-C_{\alpha} t / 2}(\operatorname{dim} \alpha) \int\left|\chi_{\alpha}(\cdots)\right| \mathrm{d} \cdots \leq \sum_{\alpha} \mathrm{e}^{-C_{\alpha} t / 2}(\operatorname{dim} \alpha)^{2}=Q_{t}(e)<\infty
$$

Formula (41) is by Witten [24, Eq. (2.51)] who determined it in his exact evaluation of the partition function of two-dimensional quantum Yang-Mills theory (the heat-kernel was not used explicitly in [24]).

It is known [13, Lemma 10.3] that $\sum_{\alpha}\left(1 /(\operatorname{dim} \alpha)^{k}\right)<\infty$ for $k \geq 2$. So, for $g \geq 2$, using dominated convergence in (41) gives

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 g}} Q_{t}\left(h b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \cdots b_{1}^{-1} a_{1}^{-1} b_{1} a_{1}\right) \mathrm{d} a_{1} \cdots \mathrm{~d} b_{g}=\sum_{\alpha} \frac{\chi_{\alpha}(h)}{(\operatorname{dim} \alpha)^{2 g-1}} . \tag{42}
\end{equation*}
$$

Proposition 10. The limit formula (42) continues to hold, with the limit $\lim _{t \downarrow 0}$ and the sum \sum_{α} being both in the $L^{2}(G, d h)$-sense.

Proof. Let $k=2 g-1$, and $d_{\alpha}=\operatorname{dim} \alpha$. Then

$$
\left\|\sum_{\alpha} \frac{\mathrm{e}^{-C_{\alpha} t}}{d_{\alpha}^{k}} \chi_{\alpha}-\sum_{\alpha} \frac{1}{d_{\alpha}^{k}} \chi_{\alpha}\right\|_{L^{2}(G)}^{2}=\sum_{\alpha} \frac{\left(\mathrm{e}^{-t C_{\alpha}}-1\right)^{2}}{d_{\alpha}^{2 k}},
$$

which, for $t>0$, is bounded, term by term, by the convergent series $\sum_{\alpha}\left(1 / d_{\alpha}^{2 k}\right)$.

3. Evaluation of limits

With notation and assumptions as before, let

$$
\begin{equation*}
K_{g}^{-1}(h)_{0} \stackrel{\text { def }}{=} \text { the set of all non-critical points of } K_{g}: G^{2 g} \rightarrow G \text { which lie on } K_{g}^{-1}(h) \tag{43}
\end{equation*}
$$

for any $h \in G$.
A point $x \in G^{2 g}$ is a non-critical point of K_{g} if and only if the isotropy group at x of the conjugation action of G on $G^{2 g}$ is discrete, an observation immediate from Theorem 2(v). Therefore, in particular

$$
\begin{equation*}
K_{g}^{-1}(e)^{0} \subset K_{g}^{-1}(e)_{0} \tag{44}
\end{equation*}
$$

If $g \geq 2$ then, by Proposition 8 (also Proposition IIIB of [11]), $K_{g}^{-1}(e)^{0}$ is not empty and hence also $K_{g}^{-1}(e)_{0} \neq \emptyset$.

As a consequence of the disintegration formula, we have the following result (mentioned in [11, Section IV]).

Lemma 1. Suppose g is an integer ≥ 2. Let f be a continuous function on $G^{2 g}$ which is 0 in a neighborhood of the critical points of K_{g}. Then

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)_{0}} \frac{f}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \mathrm{d} \operatorname{vol} . \tag{45}
\end{equation*}
$$

Proof. Let C be the set of all critical points of K_{g}. Then the complement $G^{2 g} \backslash C$ is open and the image $K_{g}\left(G^{2 g} \backslash C\right)$ is an open subset of G of full measure (by Sard's theorem, since it contains all regular values of the surjective map K_{g}) and hence is also dense in G. By Proposition 3 we have the disintegration

$$
\begin{equation*}
\int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{-2 g} \int_{K_{g}\left(G^{2 g} \backslash C\right)} F(h) Q_{t}(h) \mathrm{d} \operatorname{vol}(h), \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
F(h) \stackrel{\operatorname{def}}{=} \int_{K_{g}^{-1}(h)_{0}} \frac{f}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \mathrm{d} \mathrm{vol}, \tag{47}
\end{equation*}
$$

is a continuous function of $h \in K_{g}\left(G^{2 g} \backslash C\right)$.
The identity e belongs to $K_{g}\left(G^{2 g} \backslash C\right)$ since $K_{g}^{-1}(e)_{0} \neq \emptyset$. Moreover, $F(h)$ is 0 when h is outside the compact set $K_{g}($ support $(f)) \subset K_{g}\left(G^{2 g} \backslash C\right)$. So F extends to a continuous function on $G, 0$ outside $K_{g}\left(G^{2 g} \backslash C\right)$. So, remembering that the Riemannian volume on G is $\operatorname{vol}(G)$ times the normalized Haar mass $d h$

$$
\begin{equation*}
\int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 g} \int_{G} F(h) Q_{t}(h) d h \tag{48}
\end{equation*}
$$

and, by the initial condition property of the heat-kernel Q_{t}, this approaches the limit

$$
\operatorname{vol}(G)^{1-2 g} F(e)=\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)_{0}} \frac{f}{\left|\operatorname{det~d} K_{g}^{*}\right|} \mathrm{d} \text { vol, }
$$

as $t \downarrow 0$.
Things are much easier when we deal with a regular value of K_{g}.
Lemma 2. Let r be any integer $\geq 1, f$ a continuous function on $G^{2 r}$, and c a regular value of $K_{r}: G^{2 r} \rightarrow G$. Then

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 r}} f(x) Q_{t}\left(K_{r}(x) c^{-1}\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 r} \int_{K_{r}^{-1}(c)} \frac{f}{\left|\operatorname{det} \mathrm{~d} K_{r}^{*}\right|} \mathrm{d} \text { vol. } \tag{49}
\end{equation*}
$$

Proof. The argument is essentially the same as in the preceding lemma, but we no longer have to worry about critical points of K_{r} since there are none on $K_{r}^{-1}(c)$.

Let U and V be neighborhoods of c, with $\bar{V} \subset U$, and \bar{U} consisting only of regular values of K_{r}. Let ϕ be a continuous function on G, with $0 \leq \phi \leq 1$ everywhere, equal to 1 on V and equal to 0 outside U. Let $\psi=1-\phi$. Then $f=\left(\phi \circ K_{r}\right) f+\left(\psi \circ K_{r}\right) f$, and

$$
\left|\int_{G^{2 r}} f(x) \psi\left(K_{r}(x)\right) Q_{t}\left(K_{r}(x) c^{-1}\right) \mathrm{d} x\right| \leq|f|_{\text {sup }} \sup _{y \in G \backslash V} Q_{t}\left(y c^{-1}\right) \rightarrow 0, \quad \text { as } t \downarrow 0,
$$

by a uniform-limit property of the heat-kernel Q_{t} as $t \downarrow 0$.
On the other hand, the integrand in

$$
\int_{G^{2 r}} f(x) \phi\left(K_{r}(x)\right) Q_{t}\left(K_{r}(x) c^{-1}\right) \mathrm{d} x
$$

is 0 near the critical points of K_{r}. Note also that $\phi\left(K_{r}(x)\right)=1$ when $x \in K_{r}^{-1}(c)$, and $K_{r}^{-1}(c)$ contains no critical point of K_{r}. So, by Proposition 3 and the argument used in Lemma 1 , as $t \downarrow 0$, this integral approaches the limit

$$
\operatorname{vol}(G)^{1-2 r} \int_{K_{r}^{-1}(c)} \frac{f}{\left|\operatorname{det} \mathrm{~d} K_{r}^{*}\right|} \mathrm{d} \operatorname{vol} .
$$

Combining all these observations, we obtain the desired result.
The preceding result is essentially present in Forman [8].

4. Proof of the main result

Let g be a positive integer. Recall that $K_{g}^{-1}(e) \subset G^{2 g}$. The set of points on $K_{g}^{-1}(e)$ where $\mathrm{d} K_{g}(x): T_{x} G^{2 g} \rightarrow T_{K_{g}(x)} G$ is surjective is denoted as $K_{g}^{-1}(e)_{0}$. The set of points on $K_{g}^{-1}(e)$ where the isotropy group of the G-conjugation action is $Z(G)$ is denoted $K_{g}^{-1}(e)^{0}$.

Now suppose g_{1} and g_{2} are positive integers with $g=g_{1}+g_{2}$. We denote by $K_{g}^{-1}(e)^{0,0}$ the subset of $K_{g}^{-1}(e)$ consisting of all points $\left(x_{1}, x_{2}\right) \in G^{2 g_{1}} \times G^{2 g_{2}}$ such that the isotropy of the G-conjugation action on $G^{g_{i}}$ is $Z(G)$ at x_{i}, for $i=1$, 2. Thus

$$
\begin{equation*}
K_{g}^{-1}(e)^{0,0}=\cup_{c \in G} K_{g_{1}}^{-1}\left(c^{-1}\right)^{0} \times K_{g_{2}}^{-1}(c)^{0} \tag{50}
\end{equation*}
$$

The subset $\mathcal{U}_{g_{i}}^{0}$ of $G^{2 g_{i}}$ where the isotropy group is $Z(G)$ is (dense and) open in $G^{2 g_{i}}$, as proved in Proposition 5. So

$$
K_{g}^{-1}(e)^{0,0}=\left(\mathcal{U}_{g_{1}}^{0} \times \mathcal{U}_{g_{1}}^{0}\right) \cap K_{g}^{-1}(e)=\left(\mathcal{U}_{g_{1}}^{0} \times \mathcal{U}_{g_{2}}^{0}\right) \cap K_{g}^{-1}(e)^{0}
$$

is an open subset of $K_{g}^{-1}(e)^{0}$.
Theorem 3. For any integer $g \geq 2$, and integers $g_{1}, g_{2} \geq 1$ with $g=g_{1}+g_{2}$:

$$
\begin{equation*}
\int_{K_{g}^{-1}(e)_{0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|}=\int_{K_{g}^{-1}(e)^{0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \tag{51}
\end{equation*}
$$

$$
\begin{align*}
& \int_{K_{g}^{-1}(e)_{0}} \frac{\mathrm{~d} \mathrm{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|}=\int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \mathrm{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|}, \tag{52}\\
& \int_{K_{g}^{-1}(e)_{0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|}=\operatorname{vol}(G)^{2 g-2} \lim _{t \downarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x . \tag{53}
\end{align*}
$$

Proof. If f is a continuous function on $G^{2 g}$, with $0 \leq f \leq 1$, which is 0 in a neighborhood of the critical points of K_{g} then

$$
\begin{align*}
& \operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)_{0}} \frac{f \mathrm{dvol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \\
& \quad=\lim _{t \downarrow 0} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x \leq \lim _{t \downarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x . \tag{54}
\end{align*}
$$

The right side was noted in (42) to be finite. Taking appropriate f, with $f=1$ at distances beyond $1 / n$ from the critical points of K_{g}, and then letting $n \rightarrow \infty$ we have, by dominated convergence

$$
\begin{equation*}
\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)_{0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \leq \lim _{t \downarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x \tag{55}
\end{equation*}
$$

Next, observing that

$$
K_{g}\left(x_{1}, x_{2}\right)=K_{g_{2}}\left(x_{2}\right) K_{g_{1}}\left(x_{1}\right)
$$

for $x_{1} \in G^{g_{1}}$ and $x_{2} \in G^{g_{2}}$, and using the convolution property of the heat-kernel

$$
\int_{G} Q_{t}(a c) Q_{s}\left(c^{-1} b\right) \mathrm{d} c=Q_{t+s}(a b)=Q_{t+s}(b a)
$$

we have

$$
\begin{equation*}
\int_{G}\left[\int_{G^{2 g_{1}}} Q_{t}\left(K_{g_{1}}\left(x_{1}\right) c^{-1}\right) \mathrm{d} x_{1} \int_{G^{2 g_{2}}} Q_{t}\left(c K_{g_{2}}\left(x_{2}\right)\right) \mathrm{d} x_{2}\right] \mathrm{d} c=\int_{G^{2 g}} Q_{2 t}\left(K_{g}(x)\right) \mathrm{d} x . \tag{56}
\end{equation*}
$$

Then

$$
\begin{align*}
& \lim _{t \rightarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x \\
& \quad=\lim _{t \rightarrow 0} \int_{G}\left[\int_{G^{2 g_{1}}} Q_{t}\left(K_{g_{1}}\left(x_{1}\right) c^{-1}\right) \mathrm{d} x_{1} \int_{G^{g_{2}}} Q_{t}\left(c K_{g_{2}}\left(x_{2}\right)\right) \mathrm{d} x_{2}\right] \mathrm{d} c \\
& \quad=\int_{G}\left(\lim _{t \rightarrow 0} \int_{G^{2 g_{1}}} \cdots\right)\left(\lim _{t \rightarrow 0} \int_{G^{2 g_{2}}} \cdots\right) \mathrm{d} c \tag{57}
\end{align*}
$$

because of the $L^{2}(G, \mathrm{~d} c)$-convergence of the limits $\lim _{t \rightarrow 0}$ noted in Proposition 10.
Let D_{i} be the set of all regular values of $K_{g_{i}}: G^{2 g_{i}} \rightarrow G$, and

$$
\begin{equation*}
D \stackrel{\text { def }}{=} D_{1} \cap D_{2} \tag{58}
\end{equation*}
$$

which, as we have already noted in the context of (36), is a dense open subset of full measure in G.

Since D is of full measure in G, we can replace $\int_{G} \cdots \mathrm{~d} c$ by $\int_{D} \cdots \mathrm{~d} c$ on the right side in (57). Then using the limit value computed in Lemma 2 we have

$$
\begin{align*}
& \lim _{t \rightarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x \\
& \quad=\operatorname{vol}(G)^{2-2 g} \int_{D}\left[\int_{K_{g_{1}}^{-1}(c)} \frac{\mathrm{d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g_{1}}^{*}\right|} \int_{K_{g_{2}}^{-1}\left(c^{-1}\right)} \frac{\mathrm{d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g_{2}}^{*}\right|}\right] \mathrm{d} c . \tag{59}
\end{align*}
$$

Now inserting our "prefabricated" piece Proposition 9, we see that the integral $\int_{D}[\cdots] \mathrm{d} c$ on the right side in (59) is equal to

$$
[\operatorname{vol}(G)]^{-1} \int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|}
$$

Combining this with (55), we write

$$
\begin{align*}
& \operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)_{0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det} \mathrm{~d} K_{g}^{*}\right|} \\
& \quad \leq \lim _{t \rightarrow 0} \int_{G^{2 g}} Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\int_{K_{g}^{-1}(e)^{0,0}} \frac{\mathrm{~d} \operatorname{vol}}{\left|\operatorname{det~d} K_{g}^{*}\right|} \operatorname{vol}(G)^{1-2 g} . \tag{60}
\end{align*}
$$

Since $K_{g}^{-1}(e)^{0,0} \subset K_{g}^{-1}(e)_{0}$, it follows that the inequalities in (60) are equalities.
Since the middle integral in (60) is finite so are the others. As a consequence, we have the following corollary.

Corollary 1. For any integer $g \geq 2$, the sets $K_{g}^{-1}(e)^{0,0}$ and $K_{g}^{-1}(e)^{0}$ open, dense subsets of full measure in $K_{g}^{-1}(e)_{0}$.

Now we are ready for the following proposition.
Proposition 11. For any integer $g \geq 2$ and any continuous function f on $G^{2 g}$

$$
\begin{equation*}
\lim _{t \downarrow 0} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)^{0}} \frac{f}{\left|\mathrm{~d} K_{g}^{*}\right|} \mathrm{d} \text { vol. } \tag{61}
\end{equation*}
$$

Proof. We have proved this (in Lemma 1) when f is zero near the critical points of K_{g}. We have also proved this for $f=1$ in Theorem 3. Now by Proposition 6, the set \mathcal{U}_{g} of non-critical points of K_{g} is of full measure in $G^{2 g}$, and so

$$
\int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\int_{\mathcal{U}_{g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x
$$

Since $K_{g}^{-1}(e)^{0}$ is a subset of \mathcal{U}_{g}, the task reduces to proving a limiting result for integrals over \mathcal{U}_{g}, given that the limiting formula holds for continuous functions of compact support as well as for the constant function 1. The proof is finished by using Lemma 3 below (take X to be \mathcal{U}_{g}, which is an open subset of $G^{2 g}$).

Lemma 3. Let μ_{t}, for $t \geq 0$, be finite Borel measures on a locally compact Hausdorff space X such that $\lim _{t \downarrow 0} \mu_{t}(X)=\mu_{0}(X)$ and

$$
\lim _{t \downarrow 0} \int_{X} f \mathrm{~d} \mu_{t}=\int_{X} f \mathrm{~d} \mu_{0}
$$

for every continuous function f of compact support in X. Assume that X is the union of a countable collection of compact sets. Then

$$
\lim _{t \downarrow 0} \int_{X} f \mathrm{~d} \mu_{t}=\int_{X} f \mathrm{~d} \mu_{0}
$$

for every bounded continuous function f on X.
Proof. Let $\epsilon>0$.
Since X is the union of a countable number of compact sets, and $\mu_{0}(X)<\infty$, there is a compact set $K \subset X$ for which

$$
\mu_{0}\left(K^{c}\right)<\epsilon
$$

By local compactness there is an open set $U \supset K$ with compact closure \bar{U}, and, by Urysohn's lemma, there is a continuous function Φ with

$$
1_{K} \leq \Phi \leq 1_{U}
$$

First we demonstrate that $\lim \sup _{t \downarrow 0} \mu_{t}(\bar{U})$ is $<\epsilon$. For $s>0$ we have

$$
\mu_{s}\left(\bar{U}^{c}\right)=\mu_{s}(X)-\mu_{s}(\bar{U}) \leq \mu_{s}(X)-\int_{X} \Phi \mathrm{~d} \mu_{s}
$$

and so, for any $t>0$,

$$
\sup _{0<s \leq t} \mu_{s}\left(\bar{U}^{c}\right) \leq \sup _{0<s \leq t} \mu_{s}(X)-\inf _{0<s \leq t} \int_{X} \Phi \mathrm{~d} \mu_{s}
$$

which implies

$$
\begin{aligned}
\limsup _{t \downarrow 0} \mu_{t}\left(\bar{U}^{c}\right) & \leq \underset{t \downarrow 0}{\lim \sup } \mu_{t}(X)-\underset{t \downarrow 0}{\liminf } \int_{X} \Phi \mathrm{~d} \mu_{t} \\
& =\mu_{0}(X)-\int_{X} \Phi \mathrm{~d} \mu_{0}<\mu_{0}\left(K^{c}\right)<\epsilon
\end{aligned}
$$

Now choose an open set $V \supset \bar{U}$ with compact closure \bar{V}, and a continuous function ψ with

$$
\begin{equation*}
1_{\bar{U}} \leq 1-\psi \leq 1_{V}, \quad \text { i.e. } 1_{V^{c}} \leq \psi \leq 1_{\bar{U}^{c}} \tag{62}
\end{equation*}
$$

Let f be a continuous function on X and write it as

$$
f=\psi f+(1-\psi) f
$$

Since $(1-\psi) f$ is continuous and of compact support

$$
\lim _{t \downarrow 0} \int_{X}(1-\psi) f \mathrm{~d} \mu_{t}=\int_{X}(1-\psi) f \mathrm{~d} \mu_{0}
$$

Now we must bound $\int_{X} \psi f \mathrm{~d} \mu_{t}-\int_{X} \psi f \mathrm{~d} \mu_{0}$. To this end, we have

$$
\left|\int_{X} f \psi \mathrm{~d} \mu_{t}\right| \leq|f|_{\sup } \mu_{t}\left(\bar{U}^{c}\right),
$$

for all $t \geq 0$.
Combining all this, we have

$$
\limsup _{t \downarrow 0}\left|\int_{X} f \mathrm{~d} \mu_{t}-\int_{X} f \mathrm{~d} \mu_{0}\right| \leq \underset{t \downarrow 0}{\limsup }\left[|f|_{\text {sup }} \mu_{t}\left(\bar{U}^{c}\right)+|f|_{\text {sup }} \mu_{0}\left(\bar{U}^{c}\right)\right] \leq 2|f|_{\text {sup }} \epsilon,
$$

and since $\epsilon>0$ is arbitrary, this is all we needed.
Finally, we can turn to the following proof.
Proof of Theorem 1. Let f be a continuous function on $G^{2 g}$, invariant under the conjugation action of G, and \tilde{f} the function induced on $\mathcal{M}_{g}^{0}=K_{g}^{-1}(e) / G$. Then

$$
\begin{aligned}
& \lim _{t \downarrow} \int_{G^{2 g}} f(x) Q_{t}\left(K_{g}(x)\right) \mathrm{d} x=\operatorname{vol}(G)^{1-2 g} \int_{K_{g}^{-1}(e)^{0}} \frac{f}{\left|\mathrm{~d} K_{g}^{*}\right|} \mathrm{d} \text { vol } \quad \text { (by Eq. (61)) } \\
& =\operatorname{vol}(G)^{1-2 g} \frac{\operatorname{vol}(G)}{|Z(G)|} \int_{\mathcal{M}_{g}^{0}} \tilde{f} \mathrm{~d} v o l_{\bar{\Omega}} \quad \text { (by Thoerem 2(vii)) }
\end{aligned}
$$

which is what we had set out to prove.

Acknowledgements

I am thankful to Jeff Mitchell for comments and the Ref. [5]. Parts of this paper were written at the Indian Statistical Institute, Kolkata, and the University of Bonn, and I thank these institutions and my hosts K.B. Sinha and S. Albeverio, respectively, at these institutions. Support for my research was provided by the Alexander von Humboldt Foundation in Germany and US National Science Foundation grants DMS 9800955 and DMS 0201683. I am most grateful to the anonymous referee for a very careful examination of this paper, for pointing out a serious gap in an earlier version of this paper and for several useful comments.

Appendix A. Background/heuristics

We shall summarize the background from which Theorem 1 arises.

A.1. Geometric terminology

Let Σ be a closed (= compact without boundary), oriented two-dimensional Riemannian manifold, and G a compact, connected, semisimple Lie group with Lie algebra $L G$ equipped
with an Ad-invariant metric. Let $\pi: P \rightarrow \Sigma$ be a principal G-bundle, i.e. P is a smooth manifold with a smooth right action of G on P denoted by

$$
P \times G \rightarrow P:(p, g) \mapsto p g=R_{g} p=\gamma_{p}(g)
$$

and $\pi: P \rightarrow M$ is a smooth surjection such that each point $m \in M$ has an open neighborhood U for which there is a C^{∞} diffeomorphism $\phi: U \times G \rightarrow \pi^{-1}(U)$ satisfying $\pi \phi(a, g)=a$ and $\phi(a, g) h=\phi(a, g h)$ for every $(a, g, h) \in U \times G^{2}$.

A connection on P is an $L G$-valued one-form ω on P for which $R_{g}^{*} \omega=\operatorname{Ad}\left(g^{-1}\right) \omega$ for every $g \in G$, and $\omega\left(\gamma_{p}^{\prime}(H)\right)=H$ for every $p \in P$ and $H \in L G$. The set \mathcal{A} of all connections on P is an infinite-dimensional affine space. The tangent space $T_{\omega} \mathcal{A}$ is $\left\{\omega^{\prime}-\omega: \omega^{\prime} \in \mathcal{A}\right\}$ and this is readily checked to be

$$
T_{\omega} \mathcal{A}=\bar{\Lambda}^{1}(P ; L G)
$$

the latter being the set of all smooth one-form α on P with values in $L G$ and satisfying $R_{g}^{*} \alpha=\operatorname{Ad}\left(g^{-1}\right) \alpha$ and $\alpha_{p}(v)=0$ for all $g \in G, p \in P$, and all $v \in \operatorname{ker} \pi^{\prime}(p)$.

A gauge transformation or bundle automorphism is a C^{∞} diffeomorphism $\phi: P \rightarrow P$ for which $\phi \circ R_{g}=R_{g} \circ \phi$ for all $g \in G$ and $\pi \circ \phi=\pi$. The set of all gauge transformations forms a group \mathcal{G} under composition and this group acts on the right on \mathcal{A} by

$$
\mathcal{A} \times \mathcal{G} \rightarrow \mathcal{A}:(\omega, \phi) \mapsto \phi^{*} \omega
$$

Physically, elements of \mathcal{A} are gauge fields and elements of the quotient space $\mathcal{A} / \mathcal{G}$ represent physically equivalent classes of gauge field configurations. It is mathematically convenient to fix a basepoint $o \in \Sigma$ and work with the subgroup \mathcal{G}_{0} of \mathcal{G} consisting of all $\phi \in \mathcal{G}$ for which $\phi(u)=u$ for any $u \in \pi^{-1}(o)$, and the corresponding quotient

$$
\mathcal{C}_{0}=\frac{\mathcal{A}}{\mathcal{G}_{o}}
$$

For any connection $\omega \in \mathcal{A}$, the ω-horizontal lift of a C^{1} path $c:[0,1] \rightarrow M$ through any point $u \in \pi^{-1}(c(0))$ is the unique C^{1} path $\tilde{c}^{\omega}:[0,1] \rightarrow P$ for which $\pi \circ \tilde{c}^{\omega}=c$, $\tilde{c}^{\omega}(0)=u$, and $\omega\left(\left(\tilde{c}^{\omega}\right)^{\prime}(t)\right)=0$ for all $t \in[0,1]$. Piecing such paths together extends the notion to piecewise C^{1} paths c. If c is a loop then $\tilde{c}^{\omega}(1)$ is on the same fiber as u and so there is a unique $h \in G$ for which $\tilde{c}^{\omega}(1)=u h$; this h is the holonomy of ω around the loop c, with initial point u :

$$
h_{u}(c ; \omega): \text { holonomy of } \omega \text { around } c, \text { with initial point } u .
$$

If u is replaced by $u g$ for some $g \in G$ then $h_{u}(c ; \omega)$ gets conjugated by g, while if ω is replaced by $\phi^{*} \omega$ then $h_{u}(c ; \omega)$ gets conjugated by $\phi(u)$, where $\phi(u)$ is the unique element of G for which $\phi(u)=u \hat{\phi}(u)$. Consequently, if f is any function on G^{n} which is invariant under the conjugation action of G on G^{n}, and c_{1}, \ldots, c_{n} are piecewise smooth closed loops on Σ based at some point then

$$
f\left(h_{u}\left(c_{1} ; \omega\right) \cdots h_{u}\left(c_{n} ; \omega\right)\right)
$$

is independent of the choice of u and specifies a function on the quotient space $\mathcal{A} / \mathcal{G}$.

The curvature Ω^{ω} of a connection ω is the $L G$-valued two-form on P given on any vectors $X, Y \in T_{p} P$ by

$$
\Omega^{\omega}(X, Y)=\mathrm{d} \omega(X, Y)+[\omega(X), \omega(Y)]
$$

A.2. The Euclidean quantum Yang-Mills functional integral

The invariance properties of Ω^{ω} and the Ad-invariance of the metric on $L G$ implies that there is a well-defined function $\left|\Omega^{\omega}\right|$ on Σ whose value at any point m is equal to $\left|\Omega^{\omega}\left(e_{1}, e_{2}\right)\right|_{L G}$, where e_{1}, e_{2} are vectors in $T_{p} P$ projecting by $\pi^{\prime}(p)$ to an orthonormal basis in $T_{m} M, p$ being any point in the fiber $\pi^{-1}(m)$. The Yang-Mills action functional $S_{\text {YM }}$ is the function on \mathcal{A} given by

$$
\begin{equation*}
S_{\mathrm{YM}}(\omega)=\frac{1}{2} \int_{\Sigma}\left|\Omega^{\omega}\right|^{2} \mathrm{~d} \sigma \tag{A.1}
\end{equation*}
$$

where σ is the area-measure induced by the metric on Σ.
The Euclidean quantum Yang-Mills theory of the gauge fields ω on Σ leads to consideration of integrals

$$
\begin{equation*}
\int_{\mathcal{A}} f\left(h_{u}\left(c_{1} ; \omega\right) \cdots h_{u}\left(c_{n} ; \omega\right)\right) \mathrm{e}^{-S_{\mathrm{YM}}(\omega) / t} D \omega \tag{A.2}
\end{equation*}
$$

where t is a positive parameter, the integrand is the function described before and $D \omega$ is "Lebesgue measure" on \mathcal{A} corresponding to the metric on \mathcal{A} determined by the metrics on Σ and $L G$. Expression (A.2) is formal since no useful rigorous version of such a "Lebesgue measure" exists for the infinite-dimensional space \mathcal{A}.

A.3. The rigorous $Y M$ functional integral

In [17] the following rigorous framework was constructed using (A.2) as a guide. View Σ as a quotient:

$$
q: D \rightarrow \Sigma
$$

where D is the closed unit disk and q pastes together certain pairs of arcs on ∂D. Choose the basepoint $o=q(O)$, where O is the origin in D. Take any triangulation of D made up of radial segments and cross-radial segments, such that D projects to a triangulation T of Σ. In [17] a probability measure μ_{t} was constructed on a space $\overline{\mathcal{C}_{o}}$ and for each loop c made up of edges of T a random variable $h(c ; \omega)$ was constructed on $\overline{\mathcal{C}_{o}}$, guided by the goal of realizing the normalized form of the integral (A.2) as

$$
\begin{equation*}
\int_{\overline{\mathcal{C}_{0}}} f\left(h\left(c_{1} ; \omega\right) \cdots h\left(c_{n} ; \omega\right)\right) \mathrm{d} \mu_{t}(\omega) . \tag{A.3}
\end{equation*}
$$

The value of this rigorously defined integral was calculated.

A.4. The discrete Yang-Mills measure

Let T be any two-dimensional simplicial complex triangulating our surface Σ. Let $E_{T}=$ $\left\{e_{1}, \bar{e}_{1}, \ldots, e_{N}, \bar{e}_{N}\right\}$ be the set of all oriented one-simplices of T, with \bar{e} denoting the reverse
of e. Let \mathcal{A}_{T} be the set of all $x \in G^{E_{T}}$, mappings $E_{T} \rightarrow G: b \mapsto x_{b}=x(b)$, for which $x_{\bar{e}_{j}}=x_{e_{j}}^{-1}$ for all edges e_{j}. If κ is any path made up of edges $\kappa=b_{m}, \ldots, b_{1}$ and $x \in \mathcal{A}_{T}$ define

$$
x(\kappa) \stackrel{\text { def }}{=} x\left(b_{m}\right), \ldots, x\left(b_{1}\right)
$$

On \mathcal{A}_{T} there is the unit-mass normalized Haar measure

$$
\begin{equation*}
\mathrm{d} x=\mathrm{d} x_{e_{1}}, \ldots, \mathrm{~d} x_{e_{N}} \tag{A.4}
\end{equation*}
$$

where each $\mathrm{d} x_{e_{j}}$ is Haar measure of total mass 1 on G. Now let

$$
(0, \infty) \times G \rightarrow \mathbf{R}:(s, x) \mapsto Q_{s}(x)
$$

be the heat-kernel on G specified by the metric on G normalized to $\int_{G} Q_{t}(y) \mathrm{d} y=1$ where $\mathrm{d} y$ is Haar measure of total mass 1 on G. The discrete Yang-Mills measure ν_{t}^{T} on \mathcal{A}_{T} is given by

$$
\begin{equation*}
\mathrm{d} \nu_{t}^{T}(x)=\prod_{\Delta} Q_{t|\Delta|}(x(\partial \Delta)) \mathrm{d} x \tag{A.5}
\end{equation*}
$$

where the product is over all the two-simplices Δ of $T,|\Delta|$ denotes the area enclosed by Δ, and the conjugation/inversion-invariance property of the heat-kernel ensures that $Q_{t|\Delta|}(x(\partial \Delta))$ does not depend on where boundary loop $\partial \Delta$ is based and which way it is oriented. The convolution property (A.16) can be used to show that v_{t}^{T} has an invariance property under subdivisions of the triangulation T (see [17, Chapter 7]). Though we have used a simplicial complex T, we could have worked with a cell-complex.

A.5. The Yang-Mills loop expectations

Assume now that G is simply connected (the general case requires additional issues and notation).

In [17, Theorem 8.4] (see also the introduction in [17] for a statement) it is proved that

$$
\begin{equation*}
\int_{\overline{\mathcal{C}_{0}}} f\left(h\left(c_{1} ; \omega\right) \cdots h\left(c_{n} ; \omega\right)\right) \mathrm{d} \mu_{t}(\omega)=\frac{1}{N_{t}} \int f\left(x\left(c_{1}\right) \cdots x\left(c_{n}\right)\right) \mathrm{d} v_{t}^{T}(x) \tag{A.6}
\end{equation*}
$$

where N_{t} is the normalizing factor

$$
N_{t}=v_{t}\left(\mathcal{A}_{T}\right)
$$

given explicitly by

$$
\begin{equation*}
N_{t}=\int_{G^{2 g}} Q_{t|\Sigma|}\left(b_{g}^{-1} a_{g}^{-1} b_{g} a_{g} \cdots b_{g}^{-1} a_{g}^{-1} b_{g} a_{g}\right) \mathrm{d} a_{1} \mathrm{~d} b_{1} \cdots \mathrm{~d} a_{g} \mathrm{~d} b_{g} \tag{A.7}
\end{equation*}
$$

Here we are assuming that Σ is a closed, oriented surface of genus $g \geq 1$. Note that N_{t} does not depend on the triangulation T. Heuristically, N_{t} corresponds to the "partition function" $\int_{\mathcal{A}} \mathrm{e}^{-S_{\mathrm{YM}}(\omega) / t} D \omega$:

$$
\begin{equation*}
N_{t} \sim \int_{\mathcal{A}} \mathrm{e}^{-S_{\mathrm{YM}}(\omega) / t} D \omega \tag{A.8}
\end{equation*}
$$

A.6. Symplectics

On the infinite-dimensional affine space \mathcal{A} there is a symplectic structure Ω, due to Atiyah and Bott, given on any two vectors $A, B \in T_{\omega} \mathcal{A}$ by

$$
\begin{equation*}
\Omega(A, B)=\int_{\Sigma}\langle A \wedge B\rangle \tag{A.9}
\end{equation*}
$$

where $\langle A \wedge B\rangle$ is the two-form on Σ whose value on any vectors $X, Y \in T_{m} \Sigma$ is

$$
\langle A \wedge B\rangle(X, Y)=\langle A(X), B(Y)\rangle_{L G}-\langle A(Y), B(Y)\rangle_{L G} .
$$

A straightforward calculation (see, for example (5.5b) in [19]) shows that the action of \mathcal{G} on \mathcal{A} preserves this structure and there is a corresponding moment map, this being in fact the curvature function

$$
\omega \mapsto J(\omega)=\Omega^{\omega} .
$$

Thus the Yang-Mills density $\mathrm{e}^{-S_{\mathrm{YM}}(\omega) / t}$ is $\mathrm{e}^{-|J(\omega)|^{2} / 2 t}$.

A.7. The classical limit of μ_{t}

A heuristic calculation now shows that, for suitable \mathcal{G}-invariant functions F on \mathcal{A}, we should have

$$
\lim _{t \downarrow 0} \int_{\mathcal{A}} F(\omega) \mathrm{e}^{-|J(\omega)|^{2} / t} D \omega \sim \int_{\mathcal{A}^{0} / \mathcal{G}} F \operatorname{vol}_{\bar{\Omega}}
$$

where $\operatorname{vol}_{\bar{\Omega}}$ is the volume form corresponding to the induced symplectic structure $\bar{\Omega}$ on (part of) the moduli space of flat connections

$$
\frac{J^{-1}(0)}{\mathcal{G}}=\frac{\mathcal{A}^{0}}{\mathcal{G}}
$$

Here \mathcal{A}^{0} is the set of all flat connections, i.e. those with curvature zero.
Combining all this leads to the conjecture that

$$
\begin{equation*}
\lim _{t \downarrow} \int_{\mathcal{A}_{T}} f\left(x\left(c_{1}\right) \cdots x\left(c_{n}\right)\right) \mathrm{d} \nu_{t}^{T}(x) \sim \int_{\mathcal{A}^{0} / \mathcal{G}} f\left(h_{u}\left(c_{1} ; \omega\right) \cdots h_{u}\left(c_{n} ; \omega\right)\right) \mathrm{d} \operatorname{vol}_{\bar{\Omega}}([\omega]) \tag{A.10}
\end{equation*}
$$

where $|\omega| \in \mathcal{A}^{0} / \mathcal{G}$ corresponds to $\omega \in \mathcal{A}^{0}$, and \sim indicates equality up to constant multiple.

A.8. The standard realization of $\mathcal{A}^{0} / \mathcal{G}$

On the surface Σ, there are loops $A_{1}, B_{1}, \ldots, A_{g}, B_{g}$ all based at o, whose homotopy classes generate the fundamental group $\pi_{1}(\Sigma, o)$ subject to the condition

$$
\begin{equation*}
\bar{B}_{g} \bar{A}_{g} B_{g} A_{g} \cdots \bar{B}_{1} \bar{A}_{1} B_{1} A_{1}=I, \tag{A.11}
\end{equation*}
$$

where I is the identity element in $\pi_{1}(\Sigma, o)$ and equality above is in $\pi_{1}(\Sigma, o)$. Here, as always, g is the genus of Σ, assumed to be positive.

Assume again that G is compact, connected, simply connected, and Σ is closed, oriented of genus $g \geq 1$. Recall the product commutator map $K_{g}: G^{2 g} \rightarrow G$ from (2). A standard result (a detailed proof of which is available in [19, Theorem 4.1] for the more general case of Yang-Mills connections on possibly non-trivial bundles) says that the mapping

$$
\begin{equation*}
I: \mathcal{A}^{0} \rightarrow G^{2 g}: \omega \mapsto\left(h_{u}\left(A_{1} ; \omega\right) \cdots h_{u}\left(B_{g} ; \omega\right)\right) \tag{A.12}
\end{equation*}
$$

has image

$$
I\left(\mathcal{A}^{0}\right)=K_{g}^{-1}(e)
$$

Moreover, I induces a well-defined bijection

$$
\begin{equation*}
\bar{I}: \frac{\mathcal{A}^{0}}{\mathcal{G}} \rightarrow \frac{K_{g}^{-1}(e)}{G} \tag{A.13}
\end{equation*}
$$

where, on the right, G acts on $K_{g}^{-1}(e) \subset G^{2 g}$ by conjugating each factor. It is this identification of the moduli space of flat connections with $K_{g}^{-1}(e) / G$ which we use.

It is proved in [19, Theorem 6.1] that the symplectic structure $\bar{\Omega}$ on $\mathcal{A}^{0} / \mathcal{G}$ induces via \bar{I} the symplectic structure $\bar{\Omega}$ on $K_{g}^{-1}(e)^{0} / G$ mentioned in (9).

A.9. The limit for curves generating $\pi_{1}(\Sigma, o)$

We specialize the conjecture (A.10) to the case when c_{1}, \ldots, c_{n} are the loops A_{1}, \ldots, B_{g}. The case of general loops c_{1}, \ldots, c_{n} reduces to this special case by using the fact that $Q_{t}(x) \rightarrow \delta(x)$ as $t \downarrow 0$ to eliminate homotopically trivial loops. This requires some work; details are as in the proof of [18, Lemma 8.5].

Consider again the picture of our closed, oriented genus g surface Σ arising from the closed unit disk $D \subset \mathbf{R}^{2}=\mathbf{C}$ by a quotient map $q: D \rightarrow \Sigma$. On ∂D mark off the points $z_{k}=\mathrm{e}^{2 \pi \mathrm{i} k / 4 g}$, for $k \in\{0,1, \ldots, 4 g\}$. Let L_{k} denote the radial segment from the center O of D to the point z_{k}. Let S_{k} be the arc along ∂D running from z_{k-1} to z_{k}. The map q is injective in the interior of D and pastes S_{1} with $\overline{S_{3}}$ (the bar indicates reverse), S_{2} with $\overline{S_{4}}, S_{5}$ with $\overline{S_{7}}, \ldots, S_{4 g-2}$ with $\overline{S_{4 g}}$. Thus, for example, $\overline{q\left(L_{0}\right)} q\left(S_{1}\right) q\left(L_{0}\right)$ is a loop on the surface, which we denote as A_{1}. Similarly, we have the loops $B_{1}, A_{2}, B_{2}, \ldots, A_{g}, B_{g}$:

$$
\begin{equation*}
A_{k} \stackrel{\text { def }}{=} \overline{q\left(L_{0}\right)} q\left(S_{4 k-3}\right) q\left(L_{0}\right), \quad B_{k} \stackrel{\text { def }}{=} \overline{q\left(L_{0}\right)} q\left(S_{4 k-2}\right) q\left(L_{0}\right) \tag{A.14}
\end{equation*}
$$

Traversing around ∂D along the arcs S_{i}, and going back and forth to O along L_{0}, erasing segments which are traversed forwards and backwards successively, the loop $\bar{B}_{g} \bar{A}_{g} B_{g} A_{g} \ldots$ $\bar{B}_{1} \bar{A}_{1} B_{1} A_{1}$ in Σ simplifies to $\overline{a\left(L_{0}\right)} q(\partial D) q\left(L_{0}\right)$. Compare with the condition (A.11).

Consider now the triangulation T^{\prime} of D given by the radial segments $L_{1}, \ldots, L_{4 g}$, and the $\operatorname{arcs} S_{1}, \ldots, S_{4 g}$. Unfortunately, $T=q\left(T^{\prime}\right)$ fails to be a triangulation of Σ because q identifies all the points z_{k}; but it is "nearly" a triangulation (all that is needed is a subdivision of T^{\prime} using two new vertices on each arc S_{k} and corresponding radial segments). We will disregard this technical issue (which can be resolved with the subdivision method and the convolution technique discussed below).

Observe that A_{1}, \ldots, B_{g} are loops in T. The orientation of Σ is the one induced by q from the standard orientation of D. Let Δ_{k} be the oriented two-cells in T whose boundary is $\overline{q\left(L_{k}\right)} q\left(S_{k}\right) q\left(L_{k-1}\right)$. The integral of interest to us is

$$
\begin{equation*}
\int_{\mathcal{A}_{T}} f\left(x\left(A_{1}\right), \ldots, x\left(B_{g}\right)\right) \prod_{k=1}^{4 g} Q_{t\left|\Delta_{k}\right|}\left(x\left(\partial \Delta_{k}\right)\right) \mathrm{d} x \tag{A.15}
\end{equation*}
$$

where f is any continuous function on $G^{2 g}$-invariant under the conjugation action of G and dx denotes unit-mass Haar measure as in (A.4). It will be useful to introduce a relabelling of the edge-variables $x\left(e_{j}\right)$ which will reflect the specific situation at hand. Let

$$
x_{i} \stackrel{\text { def }}{=} x_{L_{i}}, \quad a_{k}=x\left(q\left(S_{4 k-3}\right)\right), \quad b_{k}=x\left(q\left(S_{4 k-2}\right)\right)
$$

for $i \in\{0,1, \ldots, 4 g-1\}$ and $k \in\{1,2, \ldots, g\}$. Compare with (A.14).
In the integrand in (A.15), the $f(\cdots)$ term involves x_{0} but no other x_{i}. Integration over $x_{1}, \ldots, x_{4 g-1}$ can be carried out step-by-step using the fundamental convolution property of the heat-kernel

$$
\begin{equation*}
\int_{G} Q_{r}\left(y^{-1} z\right) Q_{s}(x y) \mathrm{d} y=Q_{s+r}(x z) \tag{A.16}
\end{equation*}
$$

to combine all adjacent two-cells and eliminate the variables $x_{1}, \ldots, x_{4 g-1}$ from the integration. For example, x_{1} appears in the integration (A.15) only as

$$
\int_{G} Q_{t\left|\Delta_{1}\right|}\left(x_{1}^{-1} a_{1} x_{0}\right) Q_{t\left|\Delta_{2}\right|}\left(x_{2}^{-1} b_{1} x_{1}\right) \mathrm{d} x_{1}
$$

and this, by the convolution property is equal to

$$
Q_{t\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|\right)}\left(x_{2}^{-1} b_{1} a_{1} x_{0}\right)
$$

Next x_{2} is eliminated:

$$
\begin{aligned}
& \int_{G} Q_{t\left|\Delta_{3}\right|}\left(x_{3}^{-1} a_{1}^{-1} x_{2}\right) Q_{t\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|\right)}\left(x_{2}^{-1} b_{1} a_{1} x_{0}\right) \mathrm{d} x_{2} \\
& \quad=Q_{t\left(\left|\Delta_{1}\right|+\left|\Delta_{2}\right|+\left|\Delta_{3}\right|\right)}\left(x_{3}^{-1} a_{1}^{-1} b_{1} a_{1} x_{0}\right)
\end{aligned}
$$

Proceeding in this way all around the circle ∂D reduces (A.15) to

$$
\int f\left(x_{0}^{-1} a_{1} x_{0}, \ldots, x_{0}^{-1} b_{g} x_{0}\right) Q_{t|\Sigma|}\left(x_{0}^{-1} K_{g}\left(a_{1}, \ldots, b_{g}\right) x_{0}\right) \mathrm{d} x_{0} \mathrm{~d} a_{1} \cdots \mathrm{~d} b_{g}
$$

Conjugation invariance of f and of the heat-kernel, combined with $\int_{G} \mathrm{~d} x_{0}=1$, implies that x_{0} drops out. Thus

$$
\begin{align*}
& \int_{\mathcal{A}_{T}} f\left(x\left(A_{1}\right) \cdots x\left(B_{g}\right)\right) \mathrm{d} v_{t}^{T}(x) \\
& \quad=\int_{G^{2 g}} f\left(a_{1}, \ldots, b_{g}\right) Q_{t|\Sigma|}\left(K_{g}\left(a_{1}, \ldots, b_{g}\right)\right) \mathrm{d} a_{1} \cdots \mathrm{~d} b_{g} \tag{A.17}
\end{align*}
$$

where $|\Sigma|$ is the area of Σ, obtained as the sum of the areas $\left|\Delta_{i}\right|$.

Specializing our conjecture (A.10) to this situation now gives Theorem 1 (without the constant of proportionality).

References

[1] M. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1982) 523-615.
[2] N. Bourbaki, Groupes et Algebrès de Lie, Masson, Chapitre 9, 1982.
[3] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
[4] T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups, Springer, Berlin, 1985.
[5] I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge University Press, Cambridge, 1993.
[6] J. Dieudonne, in: I.G. Macdonald (Ed.) Treatise on Analysis, vols. III and IV, Academic Press, New York, 1972.
[7] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[8] R. Forman, Small volume limits of 2-d Yang-Mills, Commun. Math. Phys. 151 (1993) 39-52.
[9] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984) 200-225.
[10] K. Kawakubo, The Theory of Transformation Groups, Oxford University Press, Oxford, 1991.
[11] C. King, A. Sengupta, An explicit description of the symplectic structure of moduli spaces of flat connections, J. Math. Phys. (Special Issue on Topology and Physics) 35 (1994) 5338-5353.
[12] C. King, A. Sengupta, The semiclassical limit of the two dimensional quantum Yang-Mills model, J. Math. Phys. (Special Issue on Topology and Physics) 35 (1994) 5354-5361.
[13] A.W. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, Princeton, NJ.
[14] Deformation quantization of singular symplectic quotients, in: N.P. Landsman, M. Pflaum, M. Schlichenmaier (Eds.), Progress in Mathematics, vol. 198, Birkhauser, Basel, 2001.
[15] K.F. Liu, Heat kernel and moduli space, Math. Res. Lett. 3 (1996) 743-762.
[16] K.F. Liu, Heat kernel and moduli spaces: II, Math. Res. Lett. 4 (1997) 569-588.
[17] A. Sengupta, Gauge theory on compact surfaces, Mem. Am. Math. Soc. 126 (1997) 600.
[18] A. Sengupta, Yang-Mills on surfaces with boundary: quantum theory and symplectic limit, Commun. Math. Phys. 183 (1997) 661-705.
[19] A. Sengupta, The moduli space of Yang-Mills connections over a compact surface, Rev. Math. Phys. 9 (1997) 77-121.
[20] A. Sengupta, A Yang-Mills inequality for compact surface, Infin. Dimens. Anal. Rel. Topics 1 (1998) 1-16.
[21] A. Sengupta, The moduli space of flat $S U(2)$ and $S O(3)$ connections over surfaces, J. Geom. Phys. 28 (1998) 209-254.
[22] A. Sengupta, Sewing symplectic volumes for flat connections over compact surfaces, J. Geom. Phys. 32 (2000) 269-292.
[23] A. Sengupta, The Yang-Mills measure and symplectic structure on spaces of connections, in Ref. [14].
[24] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991) 153-209.
[25] E. Witten, Two dimensional quantum gauge theory revisited, J. Geom. Phys. 9 (1992) 303-368.

[^0]: E-mail address: sengupta@math.lsu.edu (A.N. Sengupta).

