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Abstract

We prove that integration over the moduli space of flat connections can be obtained as a limit
of integration with respect to the Yang—Mills measure defined in terms of the heat-kernel for the
gauge group. In doing this we also give a rigorous proof of Witten's formula for the symplectic
volume of the moduli space of flat connections. Our proof uses an elementary identity connecting
determinants of matrices along with a careful accounting of certain dense subsets of full measure
in the moduli space.
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1. Introduction
1.1. Summary and brief background

We work with a closed, oriented surfageof genusg > 2, and a compact, connected,
semisimple Lie grou equipped with a bi-invariant metric. The spad¢ef all connections
on a principalG-bundle overX has a natural symplectic structure which is preserved by
the pullback actionn — ¢*w of the groupG of bundle automorphismg. The moment
map turns out to be : o — 2%, where2® denotes the curvature of any connection
w. In this setting, the Marsden—Weinstein procedure can be carried out rigofb@kand
produces a symplectic structufzon the smooth strata df-1(0) /G. SinceJ ~1(0) is the set
of connections with zero curvaturé; 1(0)/G is themoduli space of flat connections. This

E-mail address: sengupta@math.Isu.edu (A.N. Sengupta).

0393-0440/$ — see front matter © 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0393-0440(02)00229-2



A.N. Sengupta/ Journal of Geometry and Physics 47 (2003) 398-426 399

space, along with the symplectic struct@en it, is of interest from many different points
of view (as attested to by the collectifi¥]). To be precise/~1(0)/G is not, in general,
a smooth manifold but there is a subsée‘g (arising from points of/~1(0) of “minimal”

isotropy) which is a manifold an is a symplectic structure O,N/lg.
In this paper we:
e give arigorous proof of Witten’s formul@4, formula (4.72)]

1

B 0\ _ 2g—2
volp(Mg) = IZ(GVOIG)* 72 ) | orss s

o

1)

for the symplectic volume of the moduli space Mg of flat connections, for a compact,
semisimple gauge group, over a closed oriented surface of gegus 2 (terminology,
notation, and hypotheses are explained in detail later in this introduction; note also that
/\/lg is actually a subset of the full moduli space of flat connections).

e prove Forman’s theoreli®, Theorem 1}that Wilson loop expectations in the quantum

Yang—Mills theory converges to the corresponding symplectic integrals.

We will keep things as self-contained as reasonably possible and no knowledge of the
moduli space of flat connections is actually necessary to understand the technical content of
this paper. Indeed we shall work with a standard realizatiQM(?fas afinite-dimensional
manifold. Our proof has two main ingredients:

() a determinant identityRroposition J;
(i) careful accounting of certain dense subsets of full measure in the moduli M@ce
where nice properties hold.

Witten[24,25]determined the symplectic volume of the moduli space of flat connections
in several different ways. One way involves the limit of the partition function of the quantum
Yang—Mills theory over the surface. It is this approach, involving the heat-kernel on the
structure (gauge) group, that we follow here. Forman used this approach and Witten's
volume formula to prove the convergence of the Wilson loop expectationg1bii6]
used Forman’s approach along with other ideas to study the symplectic volume and related
integrals. We refer to the collectig3], and the bibliography therein, for other works
concerning the symplectics of the moduli space of flat connections.

In the present paper we restrict our attention to the moduli space of flat connections
without distinguishing between bundles of different topological type. The methods used
here should extend to bundles of specified topology and also to the case of surfaces with
boundary but this is not carried out here.

The limiting result we prove can be reformulated to give the limit of the discrete Yang—
Mills measure for cell-complexes but we do not describe how this is done and deal only with
the case where the surface of gegus obtained by appropriate pasting of one-cell on the
boundary of a single two-cells. (The method is described in the prdéBpot.emma 8.5)

We use, in several places, the existence of appropriate dense subsets. We give either
proofs or exact references to proofs, when we state or use such density results. It is
widespread practice in the literature on this subject to state or use without clear justifi-
cation results concerning certain subsets of the moduli space of flat connections which
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are assumed to be dense and, implicitly, of full measure.nieh of the technical diffi-

culty in proving the volume formula lies in taking proper account of such subsets (which

need also to be of full measure) and so we have strived to be careful about this issue. (I
am thankful to the anonymous referee for stressing the necessity of having sets of full
measure.)

1.2. Satement of results

We work with a compact, connected, semisimple Lie gréypvhose Lie algebrdG
is equipped with an Ad-invariant inner-product. Theat-kernel on G is a functionQ; (x),
fort > 0 andx € G, satisfying the heat equati®®,(x)/9t = (1/2) Ag Q(x), WhereAg
is the Laplacian orG, and the initial condition lirmo fG f(x)0:(x)dx = f(e) for every
continuous functiory on G, wheree is the identity inG and dc the Haar measure a@ of
unit total mass/,; dx = 1.

For any integeg > 1, letK, : G? — G be the product commutator map given by

Ky :G*® — G:(a1.ba. ... a5 by) v byrag beay - by 'ay ' bay. )

The subsng‘l(e), wheree is the identity inG, of G2 will be of special interest to us. The

groupG acts by conjugation o6%¢. If A C G?¢ is preserved by this action, denote &Y
the set of all points o where the isotropy iZ(G), the center of5. The quotient

K1)
8
G )

is identifiable in a standard way with the moduli space of@latonnections over a closed,
connected, oriented two-dimensional manifold of gegiusut we shall not need any detail
of this (seq/A.13) in Appendix A). The subset
N
o Kg7(e)
&G

Mg =

(4)

(when non-empty) has a manifold structure and/\d@ there is a natural symplectic form
Q. Let volg, be the volume form corresponding to this symplectic structure; i.¢, vel
(1/d")$29/2, whered = dim M.

Our main result is the following theorem.

Theorem 1. Suppose g > 2. Let f be a continuous G-conjugation-invariant function on
G2, and f the function induced on M9 = K ;(¢)°/G. Then

. _ vol(G)* % )
im [ 700K ) = T / 7 dvolg, (5)

wheretheintegration ontheleft iswithrespect to unit-massHaar measure, theintegration on
theright iswith respect to the symplectic volume measure, | Z(G)| isthe number of elements
in the center Z(G) of G, and vol(G) is the volume of G with respect to the Riemannian
structure on G given by the Ad-invariant metric on LG.
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The integral on the left i{5) arises from integration with respect to the Yang—Mills
measure in the Euclidean quantum field theory of the Yang—Mills field on a compact oriented
surface of genug. We shall not need this, but a rapid account is giveAppendix A for
more details sef 7] or the review[23].

Setting f = 1 leads, after some computation (detaile@4g)) to Witten’s formula[24,
formula (4.72)]for the symplectic volume of the moduli spaﬁég:

1
(dima)28—2’

Volp (M) = [Z(G)Ivol(G)*72 ) (6)

wherea runs over all irreducible representations(®f

In essencekq. (5)for f = 1 is one of the approaches used by Witia4] to determine
the volume of the moduli space.

For generalf, Theorem Iwas proved by Formaj8] using Witten's volume formula (in
fact, this is also what we shall do, but we shall also prove the volume for(6))laFor
G = U(2) andSO(3), the result was proved ii21].

What we shall prove in this paper is actually the limit formula:

Iim/ f(0) Q1 (Kg(x)) dx=v0I(G)1‘28/ _ S
G K

dvol(x), 7
t}0 ;1(8)0 |ng(X)*| (x) ( )

for any continuous functiory on G2¢, where the linear mapi, (x)* : LG — (LG)%s
is the adjoint of the derivativeLG)* — LG : H > K,(x)"*K,(x)(xH), and dvol is
Riemannian volume measure on the submanib;&(e)o C G?3. The known resul{34)
then implies(5).

The main difficulty in proving (7) liesin taking proper care of the critical points of K,
and it is to this technical issue that most of the work in this paper is devoted.

Now we give a quick definition of the symplectic structupe It will be useful to think
of G% as a subset ai*" via the map

®:G% - G (a1, b1, ... ,ar,by) > (a1, b1, a7t bt o ap by a Y b Y.
Forany 1< i < 4r, andx € G¥, we write
fi = Ad(xi_1,...,x1) : LG — LG,

with f1 being the identity map. Next l&® be the two-form orG*" specified by

- 1 _ _
2o xH) =2 Y (5 Hn )

1<i,j<4r
whereH = (Hy, ..., Hs), H = (Hy,... \Hy) € (LG)¥, andejj is equal to 1 for < j,
isequalto—1ifi > j,andis 0 ifi = j. Finally, define
2 =0*Q, atwo-formonG?. (8)

The quotient spacA/lg = K;l(e)o/G, if non-empty, has a unique smooth manifold struc-
ture for which the quotient map: K ;(¢)° — K, '(e)%/ G is asubmersion. The restriction
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of 22 to K;*(¢)? drops down to a two-forn2 on Mg = K;X)%/G:
g2 = 21K (e)° 9)

It was shown if11,12](with more details if19]) thats2 is asymplectic form onMg, and,
as proved ifj19] is induced by Marsden—Weinstein-style from the Atiyah—Bott symplectic
structure[1] on the space of all connections.

1.3. Other remarks

We take this opportunity to correct in this paper Corollary 3.2 and Lemma 4.4[2pf
The correct forms involve sets afll measure and we have stated the correct result here as
Proposition 7t is this form, using sets of full measure, which is useful both for the results
of Senguptd22] and for our results here. | am very grateful to an anonymous referee for
pointing out this error which was present in an earlier version of this paper.

It should be noted that what we compute is the volu and not of the full moduli
spaceM,. The latter is not, in general, a smooth manifold but is believed to be the union
of symplectic manifolds, callesymplectic strata, of different dimensions, these manifolds
corresponding to the different isotropy groups for the actio& afmn Kg—l(e). Volumes of
all the strata have been calculated (o= SU(2) andSO(3) [21].

2. Summary of technical tools
In this section we collect together some results, proved elsewhere, which we will need.
2.1. Adeterminant identity

Let V andW be finite-dimensionaleal inner-product spaces, and: V — W a linear
map. IfA : V — W (# 0) is a linear isomorphism onto its imaggV), then by the
determinant of A we shall mean

detA = the determinant of a matrix of relative to orthonormal basesVhandA (V).
(10)
If ker(A) = {0}, or if V = {0}, then we define des) = 0.
Thus detA is determined up to a sign ambiguity, aagtA| is independent of the choice
of bases.
LetA: V — WandB: W — Z belinear maps between finite-dimensional inner-product

spaceslIf A is an isomorphism onto W or if B is an isometry (in which casgdetB| = 1
unlessW = {0}) then

|det(BA)| = |det(B)||det(A)]. (12)
Consideration of matrices shows that

det(A|(ker A)*) = det(A*|Im A).
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The following is a slightly sharpened form of Proposition 2.1[2®]. (It is this sharper
statement which was used[22].)

Proposition 1. Let X, Y (#£ {0}) be finite-dimensional real vector spaces equipped with
inner-products, and let V be a subspace of X, and Z a subspaceof Y. Let L1 : X — Z and
L> : X — Y belinear maps such that

L1Vt =0 and LV =0. (12)
Let
L=Ly+ Ly, 13)
and N = ker(L). Then:
(i) thereexistsa
unitaryisomorphism 7:N@& N+ — Ve V%t anda
linearisomorphism J:Z®Y — Z@ Y with |det/]| = 1,
such that
J(LaV) & (L2l VDT = (L1IN) @ (LIN7). 14)

(i) Themaps L1|V : V — Z and Lp|V' : V1 — Y are both surjective if and only if
L1IN : N — Zand L|N+ : Nt — Y areboth surjective.
(iii) The following equality of determinants holds:

|detLt||detL}| = |det(L1|N)*||detL*|. (15)

HereL] :Z — X,L5:Y — X,(L1IN)* : Z - Nand L*: Y — X.

Since the statement is slightly sharper than the on@2h (where this sharper form

is used) we include the full proof, though it is almost identical to that given in

[22].
Pr oof.
() Let

I:N®Nt - VeVt (b~ (a+by,(@+by),

wherein the subscripts signify orthogonal projections onto the corresponding sub-

spaces. Sinc&V @ N- ~ X ~ V @ V- isometrically, by means ofx, y)
x + y, I corresponds to the identity map oxi and is thus a unitary isomor-
phism.

LetL! : Y — Nt c X, be alinear left-inverse for the injective még N-; thus
L'L(b) = b for everyb € N+. Next define

J=R"L: ZBY - ZBY,
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where

N Z®Y > ZBY :(a,b)— Ji(a,b) = (a,a+Db),

Jo . Z®Y > Z®Y :(a,b) > Ja(a,b) = (a— L1L'b, b).
Itis clear that both/, andJ> are injective. Moreover, they are also surjective, because
forany(z,y) € Z®Y, Ji(z, y —z) = (z, y) andJo(z + L1L'y, y) = (z, y); note that
z+4 L1L'y € Z becausd.1(X) C Z. SoJ; andJ» are isomorphisms and hence so is
J.

By considering matrix representations farandJ», we havedetJ;| = |detJs| = 1,
and so

|detJ| = |detJ,||detJy]| = 1. (16)
For any(a, b) € N @ N+, we have:

J(L1lV) @ (L2|V*)I(a, b)
= J(Li(a+ D)y, L2(a+b)yr) = J(Li(a + b), La2(a + b))
= Jo(L1(a + b), L(a + b)) = Jo(L1(a + b), L(b))
= (L1(a+b) — L1L'L(b), L(b)) = (L1(a), L()).
This provesEq. (14) and part (i).

(i) Follows directly from (i).

(iii) Since L1|V+ = 0 it follows thatL3(Z) C V. Similarly, L5(Y) C viandL*(Y) C
N=. So, with appropriately restricted codomains (for instance we are tdkingZ —
Vinstead ofL] : Z — X):

(LiV* =Lf,  (LaAVH* =13, (LIND)*=L"
In view of this, we may take adjoints iBq. (14)to obtain:
(L@ Ly)J* = (L1iIN)* ® L* asmapZ @Y — N & N+,

wherein again some of the operators are taken with restricted codomains. Taking de-
terminants (which, by our definition, is not affected by restriction of codomains), and
using the determinant of products given(irl), and the fact thafdetJ| is equal to 1,

we obtain the determinant formu{a5). O

We will use the preceding proposition in a specific context(tbe a compact, connected,
semisimple Lie group with Lie algebilaG equipped with an Ad-invariant metric. Lgj
and g» be positive integers, angl = g1 + g2. We have the product commutator maps
K : G2 — G andK, : G2 — G specified througkR). Letx; € G2 andx = (x1, x2).
Define

C1:G% = G:(x1,x2) > Kgy(x1),  C2:G%® — G :(x1,x2) > Kgy(x2).
ThenkK,(x) = C2(x)C1(x) and we have the derivative maps

K, rdK,(x) : T.G% — LG,  Ci(x)"1dCi(x) : T,G* — LG,
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which are related by

Ko(x) 1 dK(x) = C1(x) "1 dC1(x) + Ad(C1(x) 1) C2(x) 2 dCa(x).
We will apply Proposition Iwith

X — (LG)%® ~ (LG)%1 @ (LG)%e2, V =(LG)*1 g0,
and

Li=Ci(x) 'dC1(x), Lz =Ad(C1(x) HCa(x) 1 dC2(x).

SpecializingProposition 1o this situation gives us the following proposition.

Proposition 2. Let x = (x1, x2) € G2 x G282, Then K, is submersive at x;, for both
i =1andi = 2,ifand onlyif K, is submersive at x and C1|K, *(e) : K;(e) — G is
submersive at x. Furthermore

|det dk , (x)*||det[dCy (x) [ker dK , (x)]*|
= |detdCy(x)*||det dCa(x)*| = |detdK,, (x1)*||det dK g, (x2)*]. (17)

2.2. Adisintegration formula

The following disintegration formula, proved in Proposition 3.12i] will be useful.
(The formula(19)is proved for vastly more gener&l by Federef7].)

Proposition 3. Let K : M — N be a smooth mapping between Riemannian manifolds.
Let Ny = K(M \ Cg), where Ck isthe set of points where K is not submersive, i.e. the
rank of dK islessthan dim N. Assumethat Cx # M. Suppose ¢ is a continuous function
of compact support on M. Let vol denote Riemannian volume measure. (For example, on
the submanifold K—1(h) \ Cx c M, for h € Ng, which is given the metric induced from
M. If dim K—1(h) = 0, the Riemannian volume is understood to be counting measure.)

If ¢ vanishesin a neighborhood of Cg, then

h— / ¢ dvol iscontinuouson N, (18)
K=Y(h\Ck

and

_ [
/M¢>dvol = /NK [/Kl(h)\cK —|det(dK)*|dVOI} dvol(h). (29)

In our application, every open subgébf M can be expressed as the union of a sequence
of open subset#,, with compact closure, and there is a sequence of continuous functions
0<¢1 <¢pp <--- < ¢y 1 1y, whereg, is 0 outsideU,,. Then, for f any continuous
non-negative function oM, usingg, f in place off in (19), and letting: — oo, monotone
convergence shows th@t9) holds for f1;; in place ofg, if U is any open subset @f \ Cg.

In particular,(19) holds for 1, in place of¢ and hence, if vdlM) < oo, also for %,_y for
any opensett, V Cc M \ Cg.
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2.3. Some dense sets of full measure

We shall describe some useful subsets which are dense and of full measure in appropriate
sets.
The groupG acts by conjugation 0G":

GxG?> G%:(h,x)~>hth = (hxeh™, ... hxoh™h), (20)

wherex = (x1, ..., x2,).
Semisimplicity of the compact grou@ (i.e. that the centeg is finite) is important in
the following. We equigG with an Ad-invariant metric.

Proposition 4. Let G be a compact, connected, semisimple Lie group and 7 a maximal
torusin G, acting on G by conjugation. Then the set of pointsin G where the isotropy is
Z(G) isan open set of full measure.

By “full measure” we mean a measurable set whose complement has measure zero. In
particular, an open set of full measure is automatically dense since the measures under
consideration assign positive measure to non-empty open sets.

Proof. Under the adjoint action of the compact abelian gr@ughe Lie algebrd G splits
up as a direct sum dfT and two-dimensional spacés, ... , R, on each of whiclf" acts
by ‘rotations’.

The compact Lie grou@, equipped with the Ad-invariant metric on the Lie algebé
is a complete Riemannian manifold. We shall use a result concerning the exponential map
for such manifolds.

For each unit vectaz € LG let §(«) be the infimum of all real numbers> 0 such that
the distance of expu) from the identitye is r. Now let B be the subset dfG consisting
of 0 and allv # 0 such thatv| < §(v/|v]), and letW = exp(B). Then it is known (see,
for instancd5, Theorem 3.2 and Proposition 3)1fat B is open,W is an open set of full
measure irG, and

B — W : v exp(v) is adiffeomorphism ontdV. (22)

For anyr € T, the conjugation maf — G : x — txt~1 is an isometric isomorphism and
so the functiors is invariant under the adjoint action @fon LG. Therefore, Adt)B = B
forallt € B.

Let

WO = exp(W), (22)

whereW’ is the subset oB consisting of all points of the form = vt + vy + - - - + vy,
with vyt € LT and eachy; € R; beingnon-zero:

W ={uvt+vi+---+ ot € LT, eachv; € R; and v; # 0}. (23)

Suppose € T commutes withe € W°. We know thatx = exp(v) for a uniquev € W'.
Moreover, since exp is injective aB and Ad#)v € B, the relatiortxt—1 = x implies that
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Ad(r)v = v. Since Adr) preserves each subspatewhosedirect sumalong withLTis LG,

it follows that Ad(r)v; = v; for eachi € {1, ... , k}. SinceT acts on the two-dimensional
spacesR; by rotations and fixes the non-zero vectgy this means that in fact Ad is
actually the identity on eacR;. Therefore, Adr) is the identity on all ofLG and sor €
Z(G). Thus theT-isotropy at each point d¥° is Z(G). Now W’ is clearly an open subset
of full measure inB, and so, since exp is a diffeomorphism Bnit follows that W0 is a
subset of full measure if. SinceW is of full measure inG, we conclude thatv? is of
full measure inG.

By a general result of transformation group thef?y IX.96, No. 4, Theorem 2; 3,
Theorem 4.3.1 and Corollary 6.2.5; 10, Theorem 4f27jcompact Lie groups acting on
connected manifolds, the set of points of minimal isotropy is (dense and) open in the whole
space. O

We apply this to show that the conjugation actiorGodn G” has minimal isotropy¥ (G)
on a set of full measure.

Proposition 5. Let G be a compact, connected, semisimple Lie group, and k any integer
>2. For the conjugation action of G on G*, the subset on which the isotropy group is Z(G)
is a dense open set of full measurein G.

Proof. As noted earlier, the set of points of minimal isotropy (for a compact Lie group
acting on a connected manifold) is open, being a consequence of a general result on trans-
formation groupq2, 1X.96, No. 4, Theorem 2]So we focus on the measure theoretic
issue.

SinceGF = G2 x G*—2, it will suffice to prove the result for = 2. LetU be the subset of
G? consisting of all points where the isotropy group of the conjugation actichisfZ(G).
The subset g of G which consists of points which generate maximal tori is of full measure
in G (see, for exampld4, Theorem 1V.2.11(ii)]. If x € G then the preceding lemma
implies that for almost every € G the isotropy group atx, y) is Z(G) (any element which
commutes withr lies in the maximal torus generated bysee, for exampl@4, Theorem
IV.2.3(i)]). So, by Fubini’s theorem(Go x G) N U is of full measure irG2. SoU is of full
measure irG2. O

The preceding result has the following consequence.

Proposition 6. For any integer r > 1 and compact, connected semisimple group G, the
critical points of the mapping K, : G¥ — G forma set of measure0in GZ'.

Proof. There is a remarkable relationship, stated3R), between the derivativeid. and
the isotropy of the conjugation action 6f on G%". The relation(32) implies that at any
critical pointx of K, the isotropy grougig € G : gxg~! = x} has a non-trivial Lie algebra,
and so, in particular, the isotropy group is not equakte;). The preceding proposition
then implies that the set of critical points &f. is contained in a set of measure 0. O

Next we show that almost every point on almost every levelkset(h) is a point of
isotropy Z(G). For this we use the important fact that the product commutator Kap
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G?% — G issurjective. This is proved if20, Proposition 4.2.43nd uses semisimplicity of
G (as | learnt later, this result also appearfinLie 1X.33 Corollaire to Proposition 1]

Proposition 7. For any integer r > 1, IetL{,0 be the subset of G where theisotropy of the
conjugation action of G is Z(G). Then for almost every 1 € G the set K,—l(h) N Z/{,O is of
full measurein K-1(h).

Proof. Letl, be the set of all non-critical points &,. Then
ul c U, (24)

because of the striking relatiq32) between the behavior ofi. and the isotropy of the
conjugation action. The mapping, |/, : U, — G is an open mapping. We have the
co-area/disintegration formula giving the volume of any opemset/,

Vol =/ [ / ﬂ] dvol, (25)
k) L/ &t aona [detdK,)*|

where vol always denotes Riemannian volume arising, in our situation, from any choice
of Ad-invariant metric onG. Since volG?) < oo, the formula(25) holds whenA is the
difference of open sets. Taking to be the set/, — u,o of measure 0, it follows that for
almost everyh € K,.(U,) the setK,‘l(h) N u,o is of full measure inKr—l(h) N U,. Now

K, (U,) contains all regular values df,: here we use theurjectivity of K, which assures

that every regular value &, is in fact a value ofK,. Moreover, by Sard’s theorem, the
set of all regular values oK, is a set of full measure i/, and, furthermore, note that
K;1(h) c U, for any regular valué of K,. Thus almost every poirit € G satisfies the
condition thatk = 1(h) N is of full measure ik 1(h) NU, = K 1(h). O

Using the notation from the preceding result we also have the following proposition.

Proposition 8. For g1, g2 > land g = g1 + g2, let
—1,,,00 _ 7,0 0 -1
K, (07" = Uy, x U,,) N K, (e), (26)

2

andlet C; : G%1 x G262 — G : (x1,x2) > Ky, (xp), for i € {1, 2}. Then K (e) isnot
empty and the set

def _ _
U12Z C1(K; 1 (0)%0) = Co(K;1(0)0) = Koy UD) N K, U), (27)

is a dense open subset of full measurein G.

Proof. Let D; be the set of all regular values &f,.. If & € D; is in the complement of
Ky, (ug) thenK (k) N ug = ¢, while, by surjectivity ofK,, the level se&;1(h) is a
non-empty closed submanifold 6f2¢ and so has positive volume. So by the preceding
result, the set of all such elementbas measure 0. Thus;, (ug) N D; is of full measure in
D;. By Sard's theoremD; is a set of full measure itr, and soK, (ug) has full measure

in G. SincekK, is submersive oﬁtg? it follows that the imageK, (Z/{g) is an open subset
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of G. So the set, (ug), fori € {1, 2}, are open sets of full measure Gnand hence so
is their intersection

U= KgU) N Kg(U).
The relation

K.(by,ay, ... b1, a1) = K.(a1, b1, ... ,ar, b))%, (28)
shows that

K. = KU
and so

u=u"t

Leth € U. Then there is, foi = 1,2, anx; € U2 with K, (x1) = h andK g, (x2) = h L.
Thenx = (x1, x2) is a point ian‘l(e)O’0 whose image undef; is 4 and whose image
underC, is k1. This, together with the inversion prope(88)implies

Ci(k; ' @*%) o U,
fori=1,2.

Conversely, suppose € C1(K;(e)*?). This means that there is a poipt;, x2) €
K 1(e)*Owith C1(x1, x2) = h. SinceK g (x1, x2) = C2(x2)C1(x1),itfollows thatCa(x2) =
h~1. The condition(x1, x2) € K, '(e)%? says also that; € ug, fori = 1,2, and soh €
Ko Q) andh™ € K, U). The inversion propert(28) then implies that € U. The
argument works if we start with € Cz(Kg*Z(e)O’O). O

2.4. Factsabout £2 and 2

The compact, semisimple group acts by conjugation 0%, Let 4/° be the set of
all points where the isotropy iZ(G). Clearly, this is carried into itself by the conjuga-
tion action. Moreoverug is a dense open subset of full measureGif¢, as we have
shown.

Let K 2(e)° = U2 N K, Y(e), the set of points ok, *(e) where the isotropy group of
the conjugation action af is Z(G), and assume that it is non-empBréposition 8mplies
that this is so wheg > 2).

Let K, (e)o be the set of points in K, '(e) where K, is submersive i.e. K,(x) :

T.G%* — Tk, (x)G is surjective. It is a consequence Bieorem 2v) that K;(¢)? is a
subset ofk ; (e)o.
ThenK;l(e)o, being a level set of a smooth submerslogug : ug — G, is a smooth

submanifold ofG28.
The quotient

o K@
Mg = T,
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being a quotient of a smooth manifold by a compact Lie group, having the same isotropy
subgroupZ(G) everywhere, is a smooth manifold (Sections 16.14.1 and 16.1063)in

The conjugation action of the group on G2, gives for anyx = (x1, ... , x2,) € G
the orbit map

YeiG — G% i hs = (hxqh ™1 L hxgeh ™). (29)

The derivative at of the product commutator ma, : G* — G is, technically, a map
.G — Tk,x)G, but by means of appropriate left translations to the identity we shall
sometimes view it as a majG)* — LG and sometimes ad G)* — Tk, )G. Its
adjoint, relative to the given Ad-invariant metric bfg, is then a linear map

dK,(x)* : LG — (LG)%. (30)

Recall from(8) the two-forms2 on G23.
We summarize some facts abaRf y, andK,.

Theorem 2. Let ¢ > 1and assumethat K ;*(e)" is not empty. Then:

(i) there is a unique smooth manifold structure on Mg = K, L)%/ G such that the
quotient map g : K;*(e)® — K;1(e)°/G isa submersion;
(i) thereisa unique smooth two-form £2 on Kg‘l(e)O/G such that ¢*(£2) = .Q|Kg1(e)0;
(iii) thetwo-form £2 isclosed and non-degenerate, i.e. it is symplectic on Mg (Proposition
IV.E in [11] and[12, Proposition 3.3}
(iv) $2 satisfiesthe “ moment map” formula

2:(XY, Y H) = (Y, dK ¢ (x)* H) gy (31)

for all x € K;(e), H € LGand ¥ € (LG) [11, Proposition IV.G]

(v) for any x = (x1, ..., xz) € G2, thekernel of . : LG — (LG)? isequal to the
kernel of dK,(x)* : LG — (LG)%:

kery, = kerdK,(x)* = {H € LG: Ad(x1))H = --- = Ad(x2o)H = H}  (32)

([11, Proposition IV.Cland also in9));
(vi) if x € K;1(e)? then

|dety|

|Pfaff($24)| = |detdKy(x)*|”

(33)

wherethe Pfaffian is, asusual, the square root of the determinant of the matrix of £2,)
relative to an orthonormal basis[12, Proposition 3.3]
(vii) if fisa measurable function on K;l(e)o, invariant under the conjugation action of G,

and f theinduced function on M9 = K;%(e)°/G then

S
/ fdvo voI(G/Z(G)) K;l(e)0 |detdl<*|dvo" (34)



A.N. Sengupta/ Journal of Geometry and Physics 47 (2003) 398-426 411

whenever either side is defined, where volg is symplectic volume for the symplectic
structure §2, while vol by itself always denotes Riemannian volume. (Essentially [12,
Proposition 3.5pr by part (vi) and [22, Lemma 3.4)

2.5. An application

We shall “prefabricate” a result that will go into the proofdieorem 1
Let g1, g2 be positive integers angd = g1 + g2. Let K, 1(e)*° the subset ok ()
consisting of all pointgxy, x2) € G281 x G282 such that the isotropy of th@-conjugation
action onG¢ is Z(G) atx;, fori = 1, 2. We have the maps; : G¢ — G specified by
C1(x1, x2) = K¢, (x1), Ca(x1, x2) = Ky, (x2).

Recall fromProposition §Eqg. (27) that

def _ _
U12= C1(K 1 (0)20) = Ca(K ;1)) = K, UQ) N K, US).

is an open subset of full measureGh

Let D; be the set of all regular values &f,;. By Sard’s theoremD; is a subset of full
measure irG. The mapsK,, being surjectivep; is contained in the image & ,. (The set
D; is also openirG.)

The inversion relation

Ky(by.ay, ... bi,a1) = K(a1, b1, ... ,ar, b)Y, (35)
implies thatD; = D;*. Therefore,
pE'Dyn Dyt (36)

is also a subset of full measure@h

Proposition 9. The following disintegration formula holds:

/ dvol
K—l(e)0,0 |det dK* |

dvol(x1) / dvol(x2)
= vol(G ——— = | dh, 37
= vol( )/ |:/ Ly ldetdK,, (x1)* |:| |: Kt (h=b) |d9tng2(x2)*|:| 37

where dh is the unit-mass Haar measure on G and vol(G) is the volume of G with respect
to the given Ad-invariant metric on the Lie algebra of G.

Proof. Let ° be the subset o6% consisting of all points where the isotropy of the
conjugation action oty is Z(G). ThenL{,0 is a non-empty (in fact, dense) open subset of
G? (thisis a special case of a general theorem on group acfn¥:96, No. 4, Theorem 2;

3, Theorem 4.3.1 and Corollary 6.2.5; 10, Theorem 4.B§ Theorem 2v), the mapK, :

G% — G is a submersion at every point#f, x ¢4, and sok;1(e)®?, being a level set

82’
of a submersion, is a smooth submanifoldz?®.
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FromProposition 4t follows thatC1|ngl(e)°’° is submersive at every point. Therefore,
by the disintegration formula iRroposition 3we have

/ dvol
KEl(e)O’O |det dK; |

d vol
=vol(G) / dh. 38
Urz |: Cl_l(h)ﬁKgl(e)O’O |det dKZﬂ |det(dC]_|ker ng)*| ( )
Next we use the determinant identity frdPnoposition 2o obtain:
/ d vol
Kgl(e)0,0 |det dK; |

dvol(x1, x2)
=vol(G / dh. 39
@ U12|: crtmnkz ()00 |dEtng1(x1)*||detng2(x2)*|:| (39)

Now the identity map
CT ) N K10 > Kt x KN ™01 (x1, x2) = (x1, x2),

is an isometry (the metric on the left is inherited from that@#). So we have
/ d vol
Kgl(e)0,0 |det dK; |

dvol(x1) / dvol(x2)
= vol(G / _— ———— | dh
© U12|: Kgt(n)© |detng1(x1)*|:| |: Kghin1yo [detdK g, (x2)*|
(40)

Since bothU;2 and D are subsets of full measure @, the integrationfU12 -..dh above
can be replaced by, - - - dh. Finally, by Proposition 7the setK;l(c)O is of full measure
in K;l(c) for almost every, and so we obtain the desired form&x). O

2.6. Aheat-kernel integral and its limit

If X1,..., Xy is an orthonormal basis of the Lie algebra®@f and« an irreducible
representation ofy thenzg":1 o, (X;)?is of the form—C, I, whereC, is a scalar (Casimir)
and| is the identity operator on the representation space dhe heat-kerneQ, has a
standard character expansion:

0:(x) =) _(dima) &2y, (x),

wherey, is the character of the representatian
The following is a very useful formula:

e~ Cal/2y, (h)

(dima)2s-1° (1)

/ ) Qi(ho*a; "heay - - by ta  brar) day -+ dby = Y
G% a
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where the sumis over allinequivalentirreducible representationé& . This can be verified
using: (i) the identity (see Example 4.17.34j)

/ xe(@ba1c) da = (dim @) "L xe (b) xa(c),
G

(ii) repeated application of standard convolution properties of characters, and (iii) commut-
ing integral and a series sum. Integral and sum can be commuted because

Y e “dima) / xal--)ld--- < Y e 2dima)® = Qi(e) < oo

Formula(41) is by Witten[24, Eq. (2.51)who determined it in his exact evaluation of the
partition function of two-dimensional quantum Yang—Mills theory (the heat-kernel was not
used explicitly in[24]).

Itis known[13, Lemma 10.3{hat} ", (1/(dim a)¥) < oo fork > 2. So, forg > 2, using
dominated convergence {41) gives

Xa(h)

. 1 1 -1 -1 — ~
lim 0:(hby"ay "bgag - - - by “ay “b1ay) day - - - dbg = Z (dima)Z-1°

42
tl0 JG2 ( )

o

Proposition 10. Thelimit formula (42) continuesto hold, with the limit lim; o and the sum
", being both in the L2(G, dh)-sense.

Proof. Letk = 2¢g — 1, andd, = dim«. Then

2
e—Co(t 1 (e—tCa _ 1)2
Z dk XD( - Z ﬁXot = Z de )
o o o T« L2(G) o o
which, forz > 0, is bounded, term by term, by the convergent seﬂg;ﬁl/dgk). O

3. Evaluation of limits

With notation and assumptions as before, let

Kg_l(h)o d=efthe set of all non-critical points of , : G2 — G which lie onK;l(h)

(43)
foranyh € G.
A pointx € G2 is a non-critical point oK, if and only if the isotropy group at of the

conjugation action o& on G2 is discrete, an observation immediate frdimeorem 2v).
Therefore, in particular

K1 C K e (44)

If ¢ > 2 then, byProposition §also Proposition 11I1B of11]), Kgl(e)o is not empty and
hence als&,; *(e)o # 9.
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As a consequence of the disintegration formula, we have the following result (mentioned
in [11, Section V).

Lemma 1. Suppose g isan integer > 2. Let f be a continuous function on G2 which is 0
in a neighborhood of the critical points of K,. Then

P _ 1-2¢g f
|l|£rc1) /G ,, T2 (K () dr = vol(G) /K o, T dK;IdVOI' (45)

Proof. Let C be the set of all critical points dt,. Then the complemer?¢ \ C is open
and the imagng(ng \ C) is an open subset af of full measure (by Sard’s theorem,
since it contains all regular values of tagjective mapK,) and hence is also denseth
By Proposition 3ve have the disintegration

/ f() 01 (Kg(x)) dx = V0|(G)72g/ F(h)Q(h)dvol(h), (46)
G2 K4 (G2\C)
where
Fin)E' / ' _4vol, (47)
Kgl(h)o |det dK§|

is a continuous function df Kg(GZg \ O).

The identitye belongs toK, (G2 \ C) sinceK ;(e)o # #. Moreover,F(h) is 0 whenh
is outside the compact sé&t, (support f)) C Kg(GZg \ C). SO F extends to a continuous
function onG, 0 outsidng(GZg \ C). So, remembering that the Riemannian volumeson
is vol(G) times the normalized Haar madis

fG . F0)Qu(K () dr = vol(G)! =% /G F(h) Q(hdh, (48)
8
and, by the initial condition property of the heat-kergg| this approaches the limit
_ _ f
vol(G)}~%2 F(e) = vol(G)* 28[ ——_dvol,
K,gl(e)o |det dK§|

ast | 0. O

Things are much easier when we deal with a regular valug,of

Lemma?2. Letr beanyinteger > 1,fa continuous function on G2, and ¢ a regular value
of K, : G¥ — G.Then

; -1 _ 1-2r f
Itlira /Gzr f(x)Q:(K,(x)c™) dx = vol(G) /K,.l(c) —|detdK;*|dV0|' (49)

Proof. The argument is essentially the same as in the preceding lemma, but we no longer
have to worry about critical points &, since there are none d@‘l(c).
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LetU andV be neighborhoods af with V ¢ U, andU consisting only of regular values
of K,. Let ¢ be a continuous function o, with 0 < ¢ < 1 everywhere, equal to 1 dn
and equal to O outsid¥. Letyy = 1 — ¢. Thenf = (¢ o K,) f + (¥ o K;) f, and

‘/ FOOU(Kr(x)) Qs (Kr ()™ dx| < | flsup SUp Qi(yc™) — 0, asr |0,
G yeG\V

by a uniform-limit property of the heat-kerng; asz | 0.
On the other hand, the integrand in

fG | FEOSK (1)) Qi(Kr(x)e™h dr,

is 0 near the critical points ok,. Note also thapp(K,(x)) = 1 whenx € K,‘l(c), and
K;1(c) contains no critical point ok,. So, byProposition 3and the argument used in
Lemma 1 ast | 0, this integral approaches the limit

(G / IV
vol(G) Py |detdK;*|dV0

Combining all these observations, we obtain the desired result. O

The preceding result is essentially present in ForfB&n

4. Proof of the main result

Let g be a positive integer. Recall thﬁgl(e) C G?¢. The set of points OlKg_l(e) where
dK,(x) : T.G* — Tk, is surjective is denoted a&, *(e)o. The set of points on
K ;(e) where the isotropy group of th@-conjugation action i€(G) is denotedk, *(¢)°.

Now suppose andg: are positive integers with = g1 + go. We denote byk; (e)%°
the subset oK, *(e) consisting of all pointgx1, x2) € G x G2 such that the isotropy
of the G-conjugation action o8 is Z(G) atx;, fori = 1, 2. Thus

K 102 = Ueec K e™0 x K HO)°. (50)

The subseug of G2¢ where the isotropy group i&(G) is (dense and) open G2, as
proved inProposition 5So

K102 = U xUg) N K e) = U xUD) N K (),

is an open subset &, *(e)°.

Theorem 3. For any integer ¢ > 2, and integers g1, g2 > 1with g = g1 + go:

/ dvol _f d vol 51
Kz (e |detdK§| K100 |detdK§| ’
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d vol / d vol
- Tdetdk* |’ 52
-/;(51(6)0 |det dKg| K100 |detdky] (52)
dvol
[ | 2g—2|' / K '
/Kgl(e)o |detdKZ§| vol(G) t'ig G2 0:(Kg(x)) dx (53)

Proof. If fis a continuous function o6%¢, with 0 < f < 1, which is 0 in a neighborhood
of the critical points ofK, then

_ fdvol
vol(G)1~2¢ / il
Kgl(e)o |det dK§|

= |ti?3 /ng JX) Qr(Kg(x)) dx < |tiiTc1) /ng 0:(Kg(x)) dx. (54)

The right side was noted i@2) to be finite. Taking appropriatg, with f = 1 at distances
beyond ¥n from the critical points oK, and then letting — oo we have, by dominated
convergence

d vol
I(G)1—28 / — < K .
vol(G) 10, TdetdKy] < t'??) -~ Q:(Kq(x)) dx (55)

Next, observing that
Kg(xla xX2) = Kgg(xZ)Kgl(xl)a

for x1 € G andxy € G2, and using the convolution property of the heat-kernel
fG 0/(a0) Q(c™'b) de = Q145(ab) = Q1(ba),
we have

/ 01Ky, (e Y dig / 01(cKy, (x2)) iz | de = / 021 (K () d.
G G2 G282 G22

(56)
Then

im [0kt

= lim / [ / Q/(Kgy (x1)e ™) dxy / Qz(Cng(xz))dxz} de
t—=0Jg G281 G82

:/;;Qm/(;zgl...)<l|iin0/G232...>dc, (57)

because of thé&2(G, dc)-convergence of the limits lim,¢ noted inProposition 10
Let D; be the set of all regular values &, : G% — G, and

pE'Di N Dy, (58)

which, as we have already noted in the contex86#, is a dense open subset of full measure
inG.
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SinceD is of full measure inG, we can replacg; - - - de by [}, - - - dc on the right side
in (57). Then using the limit value computed immma 2we have

im [ 0k s

dvol dvol
= vol(G)?~ % / / - ——— | de. (59)
D K;ll(c) |detdK§l ngl(cfl) |detdK§2

Now inserting our “prefabricated” piederoposition 9we see that the integrgl,[- - - Jdc
on the right side if{59)is equal to

d vol

l(G)]7L _,
ol [ o TERG

Combining this with(55), we write

dvol
vol(G)1~28 / —
K&Tl(e)o |det dK§|

dvol
< lim Ko(x) dx = ———vol(G)1 2%, 60
< tim [0k e ngl(e)w ot @) (60)
Sincek;1(e)*° C K ()0, it follows that the inequalities if60) are equalities. O

Since the middle integral i(60) is finite so are the others. As a consequence, we have
the following corollary.

Corollary 1. For any integer g > 2, the sets K ; () and K, () open, dense subsets
of full measurein K ;*(e)o.

Now we are ready for the following proposition.

Proposition 11. For any integer g > 2 and any continuous function f on G

- _ 1-2 f
Itli?) /ng f(x) Q:(K,4(x)) dx = vol(G) nggl(E)O _|dK§|dVO|' (61)

Proof. We have proved this (ihemma ) when f is zero near the critical points d&,.
We have also proved this fof = 1 in Theorem 3 Now by Proposition 6 the set/, of
non-critical points ofK, is of full measure inG%¢, and so

/ f(x)Qt(Kg(x))dx:/ f(x) Q1 (Kg(x)) dx.
G2% Uy

Sincng‘l(e)0 is a subset off,, the task reduces to proving a limiting result for integrals
overl, given that the limiting formula holds for continuous functions of compact support
as well as for the constant function 1. The proof is finished by ulsergma 3below (take

X to beld,, which is an open subset G23). O
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Lemma3. Let u,, for ¢ > 0, befinite Borel measureson alocally compact Hausdor ff space
Xsuchthat lim; o 1 (X) = no(X) and

Iim/ d :/ duo,
zwxf“’ Xfuo

for every continuous function f of compact support in X. Assume that X is the union of a
countable collection of compact sets. Then

li du, = d
ll?gfxfm /Xfuo,

for every bounded continuous function f on X.

Proof. Lete > 0.
SinceX is the union of a countable number of compact sets,aiid) < oo, there is a
compact sek C X for which

uo(K°) < e.

By local compactness there is an operiset K with compact closuré, and, by Urysohn’s
lemma, there is a continuous functignwith

g <@ <1y.

First we demonstrate that lim s,ggu,(f]) is < e. Fors > 0 we have

(T = 15(X) — s (D) < us(X) — / ® dy.
X
and so, for any > 0,

sup 1,(0°) = SUpj,(X) — inf /X o dus,

O<s<t O<s<t

which implies

lim supp; (U°) < lim supu,(X) — liminf / @ du,
110 t10 o Jx

= po(X) — f @duo < no(K) < e
X
Now choose an open s&t> U with compact closuré’, and a continuous functiof with
1 <1-y <1ly, ie lye <y <1p. (62)
Let f be a continuous function ok and write it as

f=vf+Q-9f

Since(1 — ) f is continuous and of compact support

|im/(1—w)fduz=/(1—¢)fduo-
t}0 Jx X
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Now we must bound, v/f du; — [y ¥f duo. To this end, we have

‘/X S dpy

forall r > 0.
Combining all this, we have

/dem—/xfduo

and since: > 0 is arbitrary, this is all we needed. O

=< |f|suvat(f]C),

lim sup
t}0

< |im¢SOUF{|f|suth(Uc)+ |f|supMO(UC)] < 2| flsuges
t

Finally, we can turn to the following proof.

Proof of Theorem 1. Let f be a continuous function a¢, invariant under the conjugation
action of G, and f the function induced omg = Kg_l(e)/G. Then

R — 1-2g f
“zT /ng f(x) Q:(K,4(x)) dx = vol(G) /Kgl(e)o _|dK§|dV0| (by Eq (61))
_,VOl(G) ~ .
= vol(G)* Zg—/ dvol; (by Thoerem 2vii))
2Ol Sy V02 Y
which is what we had set out to prove. O
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Appendix A. Background/heuristics
We shall summarize the background from whidireorem Jlarises.
A.1. Geometric terminology

Let X be a closed= compact without boundary), oriented two-dimensional Riemannian
manifold, andz a compact, connected, semisimple Lie group with Lie algeraquipped
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with an Ad-invariant metric. Let : P — X be aprincipal G-bundle, i.e. P is a smooth
manifold with a smooth right action @ on P denoted by

PxG— P:(p,g+>pd=Rep=1yp(g),

andrw : P — M is a smooth surjection such that each paint M has an open neigh-
borhoodU for which there is ac> diffeomorphism¢ : U x G — 7~ 1(U) satisfying
n¢(a, g) = a andep(a, g)h = ¢(a, gh) for every(a, g, h) € U x G2

A connection on P is anLG-valued one-formw on P for which Rza) = Ad(g_l)w for
everyg € G,andw(y,(H)) = H foreveryp € PandH € LG. The setd of all connections
on P is an infinite-dimensional affine space. The tangent sfiackis {0 — w : o’ € A}
and this is readily checked to be

T,A= AY(P;LG),

the latter being the set of all smooth one-foson P with values inLG and satisfying
Rja = Ad(g Ha anda,(v) = Oforallg € G, p € P, and allv € kerr'(p).

A gauge transformation or bundle automorphismis a C* diffeomorphism¢ : P — P
forwhichgo R, = Ryo¢forall g € G andro¢ = m. The set of all gauge transformations
forms a grougg under composition and this group acts on the right4ooy

AxG— A (v, 9) — d*w.

Physically, elements ol aregaugefieldsand elements of the quotient spad g’ represent
physically equivalent classes of gauge field configurations. It is mathematically convenient
to fix a basepoinb € X and work with the subgrou@g of G consisting of allp € G for

which ¢ (u) = u for anyu € 7~1(0), and the corresponding quotient

_A
TG

For any connectiom € A, the w-horizontal lift of a C pathc : [0,1] — M through
any pointu € 7~(c(0)) is the uniqueC?! pathé® : [0,1] — P for whichm 0 &® = ¢,
¢®(0) = u, andw((¢?)' (1)) = 0 for all r € [0, 1]. Piecing such paths together extends the
notion to piecewise&! pathsc. If ¢ is a loop thert®(1) is on the same fiber asand so
there is a uniqué € G for which¢® (1) = uh; this k is theholonomy of @ around the loop

¢, with initial pointu:

Co

hy(c; ) : holonomy ofw arounde, with initial pointu.

If u is replaced byug for someg € G thenh,(c; w) gets conjugated by, while if w is
replaced byy*w thenh, (c; w) gets conjugated by (u), wherep(u) is the unique element
of G for which¢(u) = u(?)(u). Consequently, iff is any function orG" which is invariant
under the conjugation action 6fonG", andcy, .. . , ¢, are piecewise smooth closed loops
on X based at some point then

flhy(c1; @) -+ - hy(cp; ),

is independent of the choice sfand specifies a function on the quotient spageg.
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Thecurvature 2 of a connectiom is theLG-valued two-form orP given on any vectors
X,Y e T,Pby

2°(X,Y) = do(X, V) + [0(X), o(1)].
A.2. The Euclidean quantum Yang—Mills functional integral

The invariance properties a2“ and the Ad-invariance of the metric drG implies
that there is a well-defined functig2®| on X whose value at any point is equal to
|2 (e1, e2)|LG, Whereey, e> are vectors inl, P projecting byz’(p) to an orthonormal
basis inT;,, M, p being any point in the fibet—1(m). The Yang-Mills action functional
Sywm is the function on4 given by

1
Sym (@) = E/Em‘%zdo, (A1)

whereo is the area-measure induced by the metrichn
The Euclidean quantum Yang—Mills theory of the gauge fields X leads to consid-
eration of integrals

/,4 flhu(c1; ) -+ hy(cn: ) €M@/ Dgy, (A.2)

wherer is a positive parameter, the integrand is the function described befor®ans
“Lebesgue measure” ad corresponding to the metric o4 determined by the metrics on
X andLG. ExpressiorfA.2) is formal since no useful rigorous version of such a “Lebesgue
measure” exists for the infinite-dimensional spate

A.3. Therigorous YM functional integral

In [17] the following rigorous framework was constructed usjAg?) as a guide. View
X as a quotient:

qg:D— X,

whereD is the closed unit disk angl pastes together certain pairs of arcsodnh Choose
the basepoint = ¢(0), whereO is the origin inD. Take any triangulation ab made up
of radial segments and cross-radial segments, suchtipabjects to a triangulatio® of
¥. In[17] a probability measurg, was constructed on a spaggand for each loop made
up of edges off" a random variablé(c; w) was constructed o6, guided by the goal of
realizing the normalized form of the integi@.2) as

- flh(cr; @) -+ - h(en; @) dur (). (A.3)
0

The value of this rigorously defined integral was calculated.

A.4. The discrete Yang—Mills measure

Let T be any two-dimensional simplicial complex triangulating our surfacket E; =
{e1,e1, ..., en, en} bethe setofall oriented one-simpliceggfvith e denoting the reverse
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of e. Let A7 be the set of alk € GE7, mappingsEr — G : b — x;, = x(b), for which
Xz = x;/_l for all edges;. If « is any path made up of edges= b,,, ... , b1 andx € Ar
define

x(O B %by), ... x(by).
On Ar there is the unit-mass normalized Haar measure

dx =dx,q, ..., dxey, (A.4)
where each ,dej is Haar measure of total mass 1 6nNow let

(0,00) x G = R (s, %) > Qs(x),

be the heat-kernel o specified by the metric o6 normalized tof; Q,(y) dy = 1 where
dy is Haar measure of total mass 1 6n Thediscrete Yang-Mills measure v/ on Ay is
given by

dv/ (¥) = [ | Quiar(x(@4)) dx, (A5)
A

where the product is over all the two-simplicasof T, |A| denotes the area enclosed
by A, and the conjugation/inversion—invariance property of the heat-kernel ensures that
0114](x(34)) does not depend on where boundary I@dapis based and which way it is
oriented. The convolution properfA.16) can be used to show thaf has an invariance
property under subdivisions of the triangulatibr(see[17, Chapter 7] Though we have
used a simplicial compleX, we could have worked with a cell-complex.

A.5. The Yang—Mills|oop expectations

Assume now thag is simply connected (the general case requires additional issues and

notation).
In [17, Theorem 8.4{see also the introduction [47] for a statement) it is proved that
1
/? flh(cs; ®) - h(cn; @) duy (@) = N / fx(er) -+ - x(cn)) dvf (), (A.6)
0 t

whereN; is the normalizing factor
N = Vt(AT),
given explicitly by
N; = /2 Qu5(bg ag theay - by tay bag) dag dby - - dag db,. (A7)
G28

Here we are assuming thatis a closed, oriented surface of gerus 1. Note thatV, does
not depend on the triangulatidh Heuristically,N, corresponds to the “partition function”
fA e SYymM(@)/1 Dy,

N; ~ / e SM@/I Dy, (A.8)
A
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A.6. Symplectics

On the infinite-dimensional affine spaddhere is asymplectic structure £2, due to Atiyah
and Bott, given on any two vectors, B € T,.A by

Q(A, B) = / (A A B), (A.9)
X

where(A A B) is the two-form onX whose value on any vectod§ Y € T, X' is

(AAB)(X,Y) = (A(X), BY))LG — (A(Y), B(Y))LG.

A straightforward calculation (see, for example (5.5b)1fl]) shows that the action @
on A preserves this structure and there is a corresponding moment map, this being in fact
the curvature function

o J(w) = 2°.

Thus the Yang—Mills density & @/1 g g=l/@)?/2
A.7. Theclassical limit of u;

A heuristic calculation now shows that, for suitabfeinvariant functionsF on A, we
should have

Iim/ Flw) e V@F/1 pgy ~ / Fvolg,
t}0 A AO/g
where vo}, is the volume form corresponding to the induced symplectic structuon
(part of) themoduli space of flat connections
J70)  A°
G G

Here A is the set of alflat connections, i.e. those with curvature zero.
Combining all this leads to the conjecture that

Iim/ fx(c1) -+ - x(en)) dv/ (x) N/ Sfhy(c1; @) - - - hy(cn; ) dvolg([w]),
- Jay A%/g
(A.10)

where |w| € A%/G corresponds ta € A% and~ indicates equality up to constant
multiple.

A.8. The standard realization of .A%/G

On the surfaceX, there are loopgly, By, ..., A,, B, all based ab, whose homotopy
classes generate the fundamental grou®, o) subject to the condition

ByAgByAy - B1A1B1A1 = I, (A.11)
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where [ is the identity element inr1 (X, 0) and equality above is in1(X, 0). Here, as
always,g is the genus of’, assumed to be positive.

Assume again tha¥ is compact, connected, simply connected, ahd closed, oriented
of genusg > 1. Recall the product commutator m&p : G — G from (2). A standard
result (a detailed proof of which is available[iB, Theorem 4.1jor the more general case
of Yang—Mills connections on possibly non-trivial bundles) says that the mapping

1A% > G% 0> (h(A1; ©) - hy(Bg; @), (A.12)
has image

I(A% = K He).
Moreover,I induces a well-definelijection

1: %O — Kgcl;(e)

where, on the righti; acts onK;l(e) C G2 by conjugating each factor. It is this identifi-
cation of the moduli space of flat connections V\tstgl(e)/G which we use.

Itis proved in[19, Theorem 6.1{hat the symplectic structu@ on A°/G induces vial
the symplectic structur@ on K, *(¢)°/ G mentioned in(9).

: (A.13)

A.9. Thelimit for curves generating 1(X, o)

We specialize the conjectuf&.10)to the case whes, . .. , ¢, aretheloopsly, ... , B,.
The case of general loops, ... , ¢, reduces to this special case by using the fact that
0:(x) — 8(x) ast | 0 to eliminate homotopically trivial loops. This requires some work;
details are as in the proof §f8, Lemma 8.5]

Consider again the picture of our closed, oriented genssrfaceX arising from the
closed unit diskD ¢ R? = C by a quotient mag : D — X. On 3D mark off the points
2 = €¥1k/%8 fork € {0, 1, ..., 4g). Let L, denote the radial segment from the cernder
of D to the pointzg. Let S; be the arc alongD running fromz;_1 to zx. The mapg is
injective in the interior ofb and pastes; with Sz (the bar indicates reversey with Sy, Ss
with S7, ..., S4g—2 With S_4g. Thus, for exampleg(Lo)q(S1)g(Lo) is aloop on the surface,
which we denote ad . Similarly, we have the loopBy, Az, Ba, ... , Ag, By:

AE ToaSu—aLo).  BEqTo)a(Ss—2)q(Lo). (A.14)

Traversing aroundD along the arcs;, and going back and forth t6 along Lo, erasing
segments which are traversed forwards and backwards successively, tBg fogp, A - - -
B1A1B1A; in X simplifies toa(Lo)q(dD)q(Lo). Compare with the conditiogA.11).

Consider now the triangulatiofi’ of D given by the radial segments;, ... , Lsg, and
the arcsSy, . .. , S4,. Unfortunately,T = ¢(7") fails to be a triangulation o' becausey
identifies all the pointsy; butitis “nearly” a triangulation (all that is needed is a subdivision
of T’ using two new vertices on each &f¢and corresponding radial segments). We will
disregard this technical issue (which can be resolved with the subdivision method and the
convolution technique discussed below).
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Observe thaty, ... , B, are loops inT. The orientation ofr is the one induced by
from the standard orientation @f. Let A be the oriented two-cells ifi whose boundary
is q(Li)q(Sk)g(Lx—1). The integral of interest to us is

4g
[ wan. . x [] Qo xoa0 ds. (A.15)
T

k=1

where f is any continuous function oG2¢-invariant under the conjugation action of
G and dx denotes unit-mass Haar measure g#\id). It will be useful to introduce a
relabelling of the edge-variablege;) which will reflect the specific situation at hand.
Let

def
i =xr,  ar=x(q(Sx-3),  br = x(q(Sx_2)),

forie{0,1,... ,4¢—1}andk € {1, 2, ..., g}. Compare withA.14).
In the integrand iA.15), the f(- - -) term involvesxg but no othery;. Integration over

X1, ..., X4g—1 Can be carried out step-by-step using the fundamental convolution property
of the heat-kernel
/ 0,(y12) Qs (xy) dy = Qs (x2), (A.16)
G

to combine all adjacent two-cells and eliminate the variables. . , x4,_1 from the inte-
gration. For examplex; appears in the integratidid.15) only as

/ Qz|A1|(XIla1X0)Qz\A2|(Xz_lbl)m) dxy,
G
and this, by the convolution property is equal to

Qz(\A1|+|A2\)(xglblalxo).

Next xs is eliminated:

/ 011431 (43101 x%2) Q11 Ay +1 451 (X5 Thrazxo) dxz
G

-1 -1
= Q1(1a11+1 4] +|43) (X3 ~ay ~biaixo).

Proceeding in this way all around the cird® reducegA.15)to
/ f(xalalxo, .. ,xalngo) Qt|g|(xalKg(a1, ..., bg)xo) dxgday - - - dby.

Conjugation invariance of and of the heat-kernel, combined wij@ dxo = 1, implies
thatxo drops out. Thus

f f(x(A1) -+ - x(Bg)) dv! (x)

f flat, ... be)Quz(Kg(ay, ... , by))dag - - - dby, (A.17)

where| Y| is the area of, obtained as the sum of the argas|.
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Specializing our conjectur@\.10) to this situation now give$heorem 1(without the
constant of proportionality).
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