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Abstract

We prove that integration over the moduli space of flat connections can be obtained as a limit
of integration with respect to the Yang–Mills measure defined in terms of the heat-kernel for the
gauge group. In doing this we also give a rigorous proof of Witten’s formula for the symplectic
volume of the moduli space of flat connections. Our proof uses an elementary identity connecting
determinants of matrices along with a careful accounting of certain dense subsets of full measure
in the moduli space.
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1. Introduction

1.1. Summary and brief background

We work with a closed, oriented surfaceΣ of genusg ≥ 2, and a compact, connected,
semisimple Lie groupG equipped with a bi-invariant metric. The spaceA of all connections
on a principalG-bundle overΣ has a natural symplectic structure which is preserved by
the pullback actionω �→ φ∗ω of the groupG of bundle automorphismsφ. The moment
map turns out to beJ : ω �→ Ωω, whereΩω denotes the curvature of any connection
ω. In this setting, the Marsden–Weinstein procedure can be carried out rigorously[19] and
produces a symplectic structureΩ̄ on the smooth strata ofJ−1(0)/G. SinceJ−1(0) is the set
of connections with zero curvature,J−1(0)/G is themoduli space of flat connections. This
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space, along with the symplectic structureΩ̄ on it, is of interest from many different points
of view (as attested to by the collection[14]). To be precise,J−1(0)/G is not, in general,
a smooth manifold but there is a subsetM0

g (arising from points ofJ−1(0) of “minimal”

isotropy) which is a manifold and̄Ω is a symplectic structure onM0
g.

In this paper we:

• give a rigorous proof of Witten’s formula[24, formula (4.72)]

volΩ̄(M0
g) = |Z(G)|vol(G)2g−2

∑
α

1

(dimα)2g−2
, (1)

for the symplectic volume of the moduli space M0
g of flat connections, for a compact,

semisimple gauge groupG, over a closed oriented surface of genusg ≥ 2 (terminology,
notation, and hypotheses are explained in detail later in this introduction; note also that
M0

g is actually a subset of the full moduli space of flat connections).
• prove Forman’s theorem[8, Theorem 1]that Wilson loop expectations in the quantum

Yang–Mills theory converges to the corresponding symplectic integrals.

We will keep things as self-contained as reasonably possible and no knowledge of the
moduli space of flat connections is actually necessary to understand the technical content of
this paper. Indeed we shall work with a standard realization ofM0

g as afinite-dimensional
manifold. Our proof has two main ingredients:

(i) a determinant identity (Proposition 1);
(ii) careful accounting of certain dense subsets of full measure in the moduli spaceM0

g

where nice properties hold.

Witten[24,25]determined the symplectic volume of the moduli space of flat connections
in several different ways. One way involves the limit of the partition function of the quantum
Yang–Mills theory over the surface. It is this approach, involving the heat-kernel on the
structure (gauge) group, that we follow here. Forman used this approach and Witten’s
volume formula to prove the convergence of the Wilson loop expectations. Liu[15,16]
used Forman’s approach along with other ideas to study the symplectic volume and related
integrals. We refer to the collection[23], and the bibliography therein, for other works
concerning the symplectics of the moduli space of flat connections.

In the present paper we restrict our attention to the moduli space of flat connections
without distinguishing between bundles of different topological type. The methods used
here should extend to bundles of specified topology and also to the case of surfaces with
boundary but this is not carried out here.

The limiting result we prove can be reformulated to give the limit of the discrete Yang–
Mills measure for cell-complexes but we do not describe how this is done and deal only with
the case where the surface of genusg is obtained by appropriate pasting of one-cell on the
boundary of a single two-cells. (The method is described in the proof of[18, Lemma 8.5].)

We use, in several places, the existence of appropriate dense subsets. We give either
proofs or exact references to proofs, when we state or use such density results. It is
widespread practice in the literature on this subject to state or use without clear justifi-
cation results concerning certain subsets of the moduli space of flat connections which
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are assumed to be dense and, implicitly, of full measure. Butmuch of the technical diffi-
culty in proving the volume formula lies in taking proper account of such subsets (which
need also to be of full measure) and so we have strived to be careful about this issue. (I
am thankful to the anonymous referee for stressing the necessity of having sets of full
measure.)

1.2. Statement of results

We work with a compact, connected, semisimple Lie groupG, whose Lie algebraLG
is equipped with an Ad-invariant inner-product. Theheat-kernel onG is a functionQt(x),
for t > 0 andx ∈ G, satisfying the heat equation∂Qt(x)/∂t = (1/2)∆GQt(x), where∆G

is the Laplacian onG, and the initial condition limt↓0
∫
G
f(x)Qt(x)dx = f(e) for every

continuous functionf onG, wheree is the identity inG and dx the Haar measure onG of
unit total mass

∫
G

dx = 1.
For any integerg ≥ 1, letKg : G2g → G be the product commutator map given by

Kg : G2g → G : (a1, b1, . . . , ag, bg) �→ b−1
g a−1

g bgag · · · b−1
1 a−1

1 b1a1. (2)

The subsetK−1
g (e), wheree is the identity inG, of G2g will be of special interest to us. The

groupG acts by conjugation onG2g. If A ⊂ G2g is preserved by this action, denote byA0

the set of all points onA where the isotropy isZ(G), the center ofG. The quotient

Mg = K−1
g (e)

G
, (3)

is identifiable in a standard way with the moduli space of flatG-connections over a closed,
connected, oriented two-dimensional manifold of genusg, but we shall not need any detail
of this (see(A.13) in Appendix A). The subset

M0
g = K−1

g (e)0

G
(4)

(when non-empty) has a manifold structure and onM0
g there is a natural symplectic form

Ω̄. Let volΩ̄ be the volume form corresponding to this symplectic structure; i.e. volΩ̄ =
(1/d!)Ω̄d/2, whered = dimM0

g.
Our main result is the following theorem.

Theorem 1. Suppose g ≥ 2. Let f be a continuous G-conjugation-invariant function on
G2g, and f̃ the function induced onM0

g = K−1
g (e)0/G. Then

lim
t↓0

∫
G2g

f(x)Qt(Kg(x))dx = vol(G)2−2g

|Z(G)|
∫
M0

g

f̃ d volΩ̄, (5)

where the integration on the left is with respect to unit-mass Haar measure, the integration on
the right is with respect to the symplectic volume measure, |Z(G)| is the number of elements
in the center Z(G) of G, and vol(G) is the volume of G with respect to the Riemannian
structure on G given by the Ad-invariant metric on LG.
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The integral on the left in(5) arises from integration with respect to the Yang–Mills
measure in the Euclidean quantum field theory of the Yang–Mills field on a compact oriented
surface of genusg. We shall not need this, but a rapid account is given inAppendix A; for
more details see[17] or the review[23].

Settingf = 1 leads, after some computation (detailed in(42)) to Witten’s formula[24,
formula (4.72)]for the symplectic volume of the moduli spaceM0

g:

volΩ̄(M0
g) = |Z(G)|vol(G)2g−2

∑
α

1

(dimα)2g−2
, (6)

whereα runs over all irreducible representations ofG.
In essence,Eq. (5)for f = 1 is one of the approaches used by Witten[24] to determine

the volume of the moduli space.
For generalf , Theorem 1was proved by Forman[8] using Witten’s volume formula (in

fact, this is also what we shall do, but we shall also prove the volume formula(6)). For
G = SU(2) andSO(3), the result was proved in[21].

What we shall prove in this paper is actually the limit formula:

lim
t↓0

∫
G2g

f(x)Qt(Kg(x))dx = vol(G)1−2g
∫
K−1

g (e)0

f(x)

|dKg(x)∗|d vol(x), (7)

for any continuous functionf on G2g, where the linear map dKg(x)
∗ : LG → (LG)2g

is the adjoint of the derivative(LG)2g → LG : H �→ Kg(x)
−1K′

g(x)(xH), and d vol is

Riemannian volume measure on the submanifoldK−1
g (e)0 ⊂ G2g. The known result(34)

then implies(5).
Themain difficulty in proving(7) lies in taking proper care of the critical points of Kg

and it is to this technical issue that most of the work in this paper is devoted.
Now we give a quick definition of the symplectic structureΩ̄. It will be useful to think

of G2r as a subset ofG4r via the map

Φ : G2r → G4r : (a1, b1, . . . , ar, br) �→ (a1, b1, a
−1
1 , b−1

1 , . . . , ar, br, a
−1
r , b−1

r ).

For any 1≤ i ≤ 4r, andx ∈ G4r, we write

fi = Ad(xi−1, . . . , x1) : LG → LG,

with f1 being the identity map. Next let̃Ω be the two-form onG4r specified by

Ω̃x(xH, xH′) = 1

2

∑
1≤i,j≤4r

εij

〈
f−1
i−1Hi, f

−1
j−1H

′
j

〉
LG

,

whereH = (H1, . . . , H4r), H ′ = (H ′
1, . . . , H

′
4r) ∈ (LG)4r, andεij is equal to 1 fori < j,

is equal to−1 if i > j, and is 0 ifi = j. Finally, define

Ω = Φ∗Ω̃, a two-form onG2r. (8)

The quotient spaceM0
g = K−1

g (e)0/G, if non-empty, has a unique smooth manifold struc-

ture for which the quotient mapq : K−1
g (e)0 → K−1

g (e)0/G is a submersion. The restriction
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of Ω to K−1
g (e)0 drops down to a two-form̄Ω onM0

g = K−1
g (e)0/G:

q∗Ω̄ = Ω|K−1
g (e)0. (9)

It was shown in[11,12](with more details in[19]) thatΩ̄ is asymplectic form onM0
g, and,

as proved in[19] is induced by Marsden–Weinstein-style from the Atiyah–Bott symplectic
structure[1] on the space of all connections.

1.3. Other remarks

We take this opportunity to correct in this paper Corollary 3.2 and Lemma 4.4(ii) of[22].
The correct forms involve sets offull measure and we have stated the correct result here as
Proposition 7. It is this form, using sets of full measure, which is useful both for the results
of Sengupta[22] and for our results here. I am very grateful to an anonymous referee for
pointing out this error which was present in an earlier version of this paper.

It should be noted that what we compute is the volume ofM0
g and not of the full moduli

spaceMg. The latter is not, in general, a smooth manifold but is believed to be the union
of symplectic manifolds, calledsymplectic strata, of different dimensions, these manifolds
corresponding to the different isotropy groups for the action ofG onK−1

g (e). Volumes of
all the strata have been calculated forG = SU(2) andSO(3) [21].

2. Summary of technical tools

In this section we collect together some results, proved elsewhere, which we will need.

2.1. A determinant identity

Let V andW be finite-dimensionalreal inner-product spaces, andA : V → W a linear
map. If A : V → W (�= 0) is a linear isomorphism onto its imageA(V), then by the
determinant of A we shall mean

detA = the determinant of a matrix ofA relative to orthonormal bases inV andA(V).

(10)

If ker(A) �= {0}, or if V = {0}, then we define det(A) = 0.
Thus detA is determined up to a sign ambiguity, and|detA| is independent of the choice

of bases.
LetA : V → W andB : W → Zbe linear maps between finite-dimensional inner-product

spaces.If A is an isomorphism onto W or if B is an isometry (in which case|detB| = 1
unlessW = {0}) then

|det(BA)| = |det(B)||det(A)|. (11)

Consideration of matrices shows that

det(A|(kerA)⊥) = det(A∗|Im A).
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The following is a slightly sharpened form of Proposition 2.1 of[22]. (It is this sharper
statement which was used in[22].)

Proposition 1. Let X, Y (�= {0}) be finite-dimensional real vector spaces equipped with
inner-products, and let V be a subspace of X, and Z a subspace of Y. Let L1 : X → Z and
L2 : X → Y be linear maps such that

L1|V⊥ = 0 and L2|V = 0. (12)

Let

L = L1 + L2, (13)

and N = ker(L). Then:

(i) there exists a

unitary isomorphism I : N ⊕ N⊥ → V ⊕ V⊥ and a

linear isomorphism J : Z ⊕ Y → Z ⊕ Y with |detJ | = 1,

such that

J((L1|V) ⊕ (L2|V⊥))I = (L1|N) ⊕ (L|N⊥). (14)

(ii) The maps L1|V : V → Z and L2|V⊥ : V⊥ → Y are both surjective if and only if
L1|N : N → Z and L|N⊥ : N⊥ → Y are both surjective.

(iii) The following equality of determinants holds:

|detL∗
1||detL∗

2| = |det(L1|N)∗||detL∗|. (15)

HereL∗
1 : Z → X, L∗

2 : Y → X, (L1|N)∗ : Z → N and L∗ : Y → X.

Since the statement is slightly sharper than the one in[22] (where this sharper form
is used) we include the full proof, though it is almost identical to that given in
[22].

Proof.

(i) Let

I : N ⊕ N⊥ → V ⊕ V⊥ : (a, b) �→ ((a + b)V , (a + b)V⊥),

wherein the subscripts signify orthogonal projections onto the corresponding sub-
spaces. SinceN ⊕ N⊥ � X � V ⊕ V⊥ isometrically, by means of(x, y) �→
x + y, I corresponds to the identity map onX and is thus a unitary isomor-
phism.

Let Ll : Y → N⊥ ⊂ X, be a linear left-inverse for the injective mapL/N⊥; thus
LlL(b) = b for everyb ∈ N⊥. Next define

J = J2J1 : Z ⊕ Y → Z ⊕ Y,
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where

J1 : Z ⊕ Y → Z ⊕ Y : (a, b) �→ J1(a, b) = (a, a + b),

J2 : Z ⊕ Y → Z ⊕ Y : (a, b) �→ J2(a, b) = (a − L1L
lb, b).

It is clear that bothJ1 andJ2 are injective. Moreover, they are also surjective, because
for any(z, y) ∈ Z ⊕ Y , J1(z, y − z) = (z, y) andJ2(z+L1L

ly, y) = (z, y); note that
z + L1L

ly ∈ Z becauseL1(X) ⊂ Z. SoJ1 andJ2 are isomorphisms and hence so is
J .

By considering matrix representations forJ1 andJ2, we have|detJ1| = |detJ2| = 1,
and so

|detJ | = |detJ2||detJ1| = 1. (16)

For any(a, b) ∈ N ⊕ N⊥, we have:

J((L1|V) ⊕ (L2|V⊥))I(a, b)

= J(L1(a + b)V , L2(a + b)V⊥) = J(L1(a + b), L2(a + b))

= J2(L1(a + b), L(a + b)) = J2(L1(a + b), L(b))

= (L1(a + b) − L1L
lL(b), L(b)) = (L1(a), L(b)).

This provesEq. (14), and part (i).
(ii) Follows directly from (i).

(iii) Since L1|V⊥ = 0 it follows thatL∗
1(Z) ⊂ V . Similarly, L∗

2(Y) ⊂ V⊥ andL∗(Y) ⊂
N⊥. So, with appropriately restricted codomains (for instance we are takingL∗

1 : Z →
V instead ofL∗

1 : Z → X):

(L1|V)∗ = L∗
1, (L2|V⊥)∗ = L∗

2, (L|N⊥)∗ = L∗.

In view of this, we may take adjoints inEq. (14)to obtain:

I∗(L∗
1 ⊕ L∗

2)J
∗ = (L1|N)∗ ⊕ L∗ as mapsZ ⊕ Y → N ⊕ N⊥,

wherein again some of the operators are taken with restricted codomains. Taking de-
terminants (which, by our definition, is not affected by restriction of codomains), and
using the determinant of products given in(11), and the fact that|detJ | is equal to 1,
we obtain the determinant formula(15). �

We will use the preceding proposition in a specific context. LetGbe a compact, connected,
semisimple Lie group with Lie algebraLG equipped with an Ad-invariant metric. Letg1
andg2 be positive integers, andg = g1 + g2. We have the product commutator maps
Kgi : G2gi → G andKg : G2g → G specified through(2). Letxi ∈ G2gi andx = (x1, x2).
Define

C1 : G2g → G : (x1, x2) �→ Kg1(x1), C2 : G2g → G : (x1, x2) �→ Kg2(x2).

ThenKg(x) = C2(x)C1(x) and we have the derivative maps

Kg(x)
−1 dKg(x) : TxG

2g → LG, Ci(x)
−1 dCi(x) : TxG

2g → LG,
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which are related by

Kg(x)
−1 dKg(x) = C1(x)

−1 dC1(x) + Ad(C1(x)
−1)C2(x)

−2 dC2(x).

We will applyProposition 1with

X − (LG)2g � (LG)2g1 ⊕ (LG)2g2, V = (LG)2g1 ⊕ 0,

and

L1 = C1(x)
−1 dC1(x), L2 = Ad(C1(x)

−1)C2(x)
−1 dC2(x).

SpecializingProposition 1to this situation gives us the following proposition.

Proposition 2. Let x = (x1, x2) ∈ G2g1 × G2g2. Then Kgi is submersive at xi, for both
i = 1 and i = 2, if and only if Kg is submersive at x and C1|K−1

g (e) : K−1
g (e) → G is

submersive at x. Furthermore

|det dKg(x)
∗||det[dC1(x)|ker dKg(x)]

∗|
= |det dC1(x)

∗||det dC2(x)
∗| = |det dKg1(x1)

∗||det dKg2(x2)
∗|. (17)

2.2. A disintegration formula

The following disintegration formula, proved in Proposition 3.1 of[22] will be useful.
(The formula(19) is proved for vastly more generalK by Federer[7].)

Proposition 3. Let K : M → N be a smooth mapping between Riemannian manifolds.
Let NK = K(M \ CK), where CK is the set of points where K is not submersive, i.e. the
rank of dK is less than dimN. Assume that CK �= M. Suppose φ is a continuous function
of compact support on M. Let vol denote Riemannian volume measure. (For example, on
the submanifold K−1(h) \ CK ⊂ M, for h ∈ NK, which is given the metric induced from
M. If dimK−1(h) = 0, the Riemannian volume is understood to be counting measure.)

If φ vanishes in a neighborhood of CK, then

h �→
∫
K−1(h)\CK

φ d vol is continuous onNK, (18)

and ∫
M

φ d vol =
∫
NK

[∫
K−1(h)\CK

φ

|det(dK)∗|d vol

]
d vol(h). (19)

In our application, every open subsetU of M can be expressed as the union of a sequence
of open subsetsUn with compact closure, and there is a sequence of continuous functions
0 ≤ φ1 ≤ φ2 ≤ · · · ≤ φn ↑ 1U , whereφn is 0 outsideUn. Then, forf any continuous
non-negative function onM, usingφnf in place off in (19), and lettingn → ∞, monotone
convergence shows that(19)holds forf1U in place ofφ, if U is any open subset ofM \CK.
In particular,(19)holds for 1U in place ofφ and hence, if vol(M) < ∞, also for 1U−V for
any open setsU,V ⊂ M \ CK.
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2.3. Some dense sets of full measure

We shall describe some useful subsets which are dense and of full measure in appropriate
sets.

The groupG acts by conjugation onG2r:

G × G24 → G2r : (h, x) �→ hxh−1 = (hx1h
−1, . . . , hx2rh

−1), (20)

wherex = (x1, . . . , x2r).
Semisimplicity of the compact groupG (i.e. that the centerG is finite) is important in

the following. We equipG with an Ad-invariant metric.

Proposition 4. Let G be a compact, connected, semisimple Lie group and T a maximal
torus in G, acting on G by conjugation. Then the set of points in G where the isotropy is
Z(G) is an open set of full measure.

By “full measure” we mean a measurable set whose complement has measure zero. In
particular, an open set of full measure is automatically dense since the measures under
consideration assign positive measure to non-empty open sets.

Proof. Under the adjoint action of the compact abelian groupT , the Lie algebraLG splits
up as a direct sum ofLT and two-dimensional spacesR1, . . . , Rk on each of whichT acts
by ‘rotations’.

The compact Lie groupG, equipped with the Ad-invariant metric on the Lie algebraLG,
is a complete Riemannian manifold. We shall use a result concerning the exponential map
for such manifolds.

For each unit vectoru ∈ LG let δ(u) be the infimum of all real numbersr > 0 such that
the distance of exp(ru) from the identitye is r. Now letB be the subset ofLG consisting
of 0 and allv �= 0 such that|v| < δ(v/|v|), and letW = exp(B). Then it is known (see,
for instance[5, Theorem 3.2 and Proposition 3.1]) thatB is open,W is an open set of full
measure inG, and

B → W : v �→ exp(v) is a diffeomorphism ontoW. (21)

For anyt ∈ T , the conjugation mapG → G : x �→ txt−1 is an isometric isomorphism and
so the functionδ is invariant under the adjoint action ofT on LG. Therefore, Ad(t)B = B

for all t ∈ B.
Let

W0 = exp(W ′), (22)

whereW ′ is the subset ofB consisting of all points of the formv = vLT + v1 + · · · + vk,
with vLT ∈ LT and eachvi ∈ Ri beingnon-zero:

W ′ = {vLT + v1 + · · · + vk|vLT ∈ LT, each vi ∈ Ri and vi �= 0}. (23)

Supposet ∈ T commutes withx ∈ W0. We know thatx = exp(v) for a uniquev ∈ W ′.
Moreover, since exp is injective onB and Ad(t)v ∈ B, the relationtxt−1 = x implies that
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Ad(t)v = v. Since Ad(t) preserves each subspaceRi, whosedirect sum along withLT isLG,
it follows that Ad(t)vi = vi for eachi ∈ {1, . . . , k}. SinceT acts on the two-dimensional
spacesRi by rotations and fixes the non-zero vectorvi, this means that in fact Ad(t) is
actually the identity on eachRi. Therefore, Ad(t) is the identity on all ofLG and sot ∈
Z(G). Thus theT -isotropy at each point ofW0 is Z(G). NowW ′ is clearly an open subset
of full measure inB, and so, since exp is a diffeomorphism onB, it follows thatW0 is a
subset of full measure inW . SinceW is of full measure inG, we conclude thatW0 is of
full measure inG.

By a general result of transformation group theory[2, IX.96, No. 4, Theorem 2; 3,
Theorem 4.3.1 and Corollary 6.2.5; 10, Theorem 4.27]for compact Lie groups acting on
connected manifolds, the set of points of minimal isotropy is (dense and) open in the whole
space. �

We apply this to show that the conjugation action ofG onGr has minimal isotropyZ(G)

on a set of full measure.

Proposition 5. Let G be a compact, connected, semisimple Lie group, and k any integer
≥2. For the conjugation action of G on Gk, the subset on which the isotropy group is Z(G)

is a dense open set of full measure in G.

Proof. As noted earlier, the set of points of minimal isotropy (for a compact Lie group
acting on a connected manifold) is open, being a consequence of a general result on trans-
formation groups[2, IX.96, No. 4, Theorem 2]. So we focus on the measure theoretic
issue.

SinceGk = G2×Gk−2, it will suffice to prove the result fork = 2. LetU be the subset of
G2 consisting of all points where the isotropy group of the conjugation action ofG isZ(G).
The subsetG0 of G which consists of points which generate maximal tori is of full measure
in G (see, for example,[4, Theorem IV.2.11(ii)]). If x ∈ G0 then the preceding lemma
implies that for almost everyy ∈ G the isotropy group at(x, y) isZ(G) (any element which
commutes withx lies in the maximal torus generated byx; see, for example[4, Theorem
IV.2.3(i)]). So, by Fubini’s theorem,(G0 ×G)∩U is of full measure inG2. SoU is of full
measure inG2. �

The preceding result has the following consequence.

Proposition 6. For any integer r ≥ 1 and compact, connected semisimple group G, the
critical points of the mapping Kr : G2r → G form a set of measure 0 in G2r.

Proof. There is a remarkable relationship, stated in(32), between the derivative dKr and
the isotropy of the conjugation action ofG on G2r. The relation(32) implies that at any
critical pointx of Kr the isotropy group{g ∈ G : gxg−1 = x} has a non-trivial Lie algebra,
and so, in particular, the isotropy group is not equal toZ(G). The preceding proposition
then implies that the set of critical points ofKr is contained in a set of measure 0. �

Next we show that almost every point on almost every level setK−1
r (h) is a point of

isotropyZ(G). For this we use the important fact that the product commutator mapKr :



408 A.N. Sengupta / Journal of Geometry and Physics 47 (2003) 398–426

G2r → G is surjective. This is proved in[20, Proposition 4.2.4]and uses semisimplicity of
G (as I learnt later, this result also appears in[2, Lie IX.33 Corollaire to Proposition 10]).

Proposition 7. For any integer r ≥ 1, let U 0
r be the subset of G2r where the isotropy of the

conjugation action of G is Z(G). Then for almost every h ∈ G the set K−1
r (h) ∩ U 0

r is of
full measure in K−1

r (h).

Proof. Let Ur be the set of all non-critical points ofKr. Then

U 0
r ⊂ Ur, (24)

because of the striking relation(32) between the behavior of dKr and the isotropy of the
conjugation action. The mappingKr|Ur : Ur → G is an open mapping. We have the
co-area/disintegration formula giving the volume of any open setA ⊂ Ur:

vol(A) =
∫
Kr(Ur)

[∫
K−1

r (h)∩A

d vol

|det(dKr)∗|
]

d vol, (25)

where vol always denotes Riemannian volume arising, in our situation, from any choice
of Ad-invariant metric onG. Since vol(G2r) < ∞, the formula(25) holds whenA is the
difference of open sets. TakingA to be the setUr − U 0

r of measure 0, it follows that for
almost everyh ∈ Kr(Ur) the setK−1

r (h) ∩ U 0
r is of full measure inK−1

r (h) ∩ Ur. Now
Kr(Ur) contains all regular values ofKr: here we use thesurjectivity of Kr which assures
that every regular value ofKr is in fact a value ofKr. Moreover, by Sard’s theorem, the
set of all regular values ofKr is a set of full measure inG, and, furthermore, note that
K−1

r (h) ⊂ Ur for any regular valueh of Kr. Thus almost every pointh ∈ G satisfies the
condition thatK−1

r (h) ∩ U 0
r is of full measure inK−1

r (h) ∩ Ur = K−1
r (h). �

Using the notation from the preceding result we also have the following proposition.

Proposition 8. For g1, g2 ≥ 1 and g = g1 + g2, let

K−1
g (e)0,0 = (U 0

g1
× U 0

g2
) ∩ K−1

g (e), (26)

and let Ci : G2g1 × G2g2 → G : (x1, x2) �→ Kgi(xi), for i ∈ {1,2}. Then K−1
g (e)0,0 is not

empty and the set

U12
def=C1(K

−1
g (e)0,0) = C2(K

−1
g (e)0,0) = Kg1(U

0
g1
) ∩ Kg2(U

0
g2
), (27)

is a dense open subset of full measure in G.

Proof. Let Di be the set of all regular values ofKgi . If h ∈ Di is in the complement of
Kgi(U

0
gi
) thenK−1

gi
(h) ∩ U 0

gi
= ∅, while, by surjectivity ofKgi , the level setK−1

gi
(h) is a

non-empty closed submanifold ofG2gi and so has positive volume. So by the preceding
result, the set of all such elementsh has measure 0. ThusKgi(U

0
gi
)∩Di is of full measure in

Di. By Sard’s theorem,Di is a set of full measure inG, and soKgi(U
0
gi
) has full measure

in G. SinceKgi is submersive onU 0
gi

it follows that the imageKgi(U
0
gi
) is an open subset
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of G. So the setsKgi(U
0
gi
), for i ∈ {1,2}, are open sets of full measure onG and hence so

is their intersection

U = Kg1(U
0
g1
) ∩ Kg2(U

0
g2
).

The relation

Kr(br, ar, . . . , b1, a1) = Kr(a1, b1, . . . , ar, br)
−1, (28)

shows that

Kr(U
0
r ) = Kr(U

0
r )

−1,

and so

U = U−1.

Let h ∈ U. Then there is, fori = 1,2, anxi ∈ U 0
gi

with Kg1(x1) = h andKg2(x2) = h−1.

Thenx = (x1, x2) is a point inK−1
g (e)0,0 whose image underC1 is h and whose image

underC2 is h−1. This, together with the inversion property(28) implies

Ci(K
−1
g (e)0,0) ⊃ U,

for i = 1,2.
Conversely, supposeh ∈ C1(K

−1
g (e)0,0). This means that there is a point(x1, x2) ∈

K−1
g (e)0,0 withC1(x1, x2) = h. SinceKg(x1, x2) = C2(x2)C1(x1), it follows thatC2(x2) =

h−1. The condition(x1, x2) ∈ K−1
g (e)0,0 says also thatxi ∈ U 0

gi
, for i = 1,2, and soh ∈

Kg1(U
0
g1
) andh−1 ∈ Kg2(U

0
g2
). The inversion property(28) then implies thath ∈ U. The

argument works if we start withh ∈ C2(K
−2
g (e)0,0). �

2.4. Facts about Ω and Ω̄

The compact, semisimple groupG acts by conjugation onG2g. Let U 0
g be the set of

all points where the isotropy isZ(G). Clearly, this is carried into itself by the conjuga-
tion action. Moreover,U 0

g is a dense open subset of full measure inG2g, as we have
shown.

Let K−1
g (e)0 = U 0

g ∩ K−1
g (e), the set of points onK−1

g (e) where the isotropy group of
the conjugation action ofG isZ(G), and assume that it is non-empty (Proposition 8implies
that this is so wheng ≥ 2).

Let K−1
g (e)0 be the set of pointsx in K−1

g (e) whereKg is submersive i.e. dKg(x) :

TxG
2g → TKg(x)G is surjective. It is a consequence ofTheorem 2(v) thatK−1

g (e)0 is a

subset ofK−1
g (e)0.

ThenK−1
g (e)0, being a level set of a smooth submersionKg|U 0

g : U 0
g → G, is a smooth

submanifold ofG2g.
The quotient

M0
g = K−1

g (e)0

G
,
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being a quotient of a smooth manifold by a compact Lie group, having the same isotropy
subgroupZ(G) everywhere, is a smooth manifold (Sections 16.14.1 and 16.10.3 in[6]).

The conjugation action of the groupG onG2g, gives for anyx = (x1, . . . , x2g) ∈ G2g

the orbit map

γx : G → G2g : h �→ hxh−1 = (hx1h
−1, . . . , hx2gh

−1). (29)

The derivative atx of the product commutator mapKg : G2g → G is, technically, a map
TxG

2g → TKg(x)G, but by means of appropriate left translations to the identity we shall
sometimes view it as a map(LG)2g → LG and sometimes as(LG)2g → TKg(x)G. Its
adjoint, relative to the given Ad-invariant metric onLG, is then a linear map

dKg(x)
∗ : LG → (LG)2g. (30)

Recall from(8) the two-formΩ onG2g.
We summarize some facts aboutΩ, γ, andKg.

Theorem 2. Let g ≥ 1 and assume that K−1
g (e)0 is not empty. Then:

(i) there is a unique smooth manifold structure on M0
g = K−1

g (e)0/G such that the

quotient map q : K−1
g (e)0 → K−1

g (e)0/G is a submersion;

(ii) there is a unique smooth two-form Ω̄ on K−1
g (e)0/G such that q∗(Ω̄) = Ω|K−1

g (e)0;

(iii) the two-form Ω̄ is closed and non-degenerate, i.e. it is symplectic onM0
g (Proposition

IV.E in [11] and[12, Proposition 3.3]);
(iv) Ω satisfies the “moment map” formula

Ωx(xY, γ ′
xH) = 〈Y,dKg(x)

∗H〉(LG)2g , (31)

for all x ∈ K−1
g (e), H ∈ LG and Y ∈ (LG)2g [11, Proposition IV.G];

(v) for any x = (x1, . . . , x2g) ∈ G2g, the kernel of γ ′
x : LG → (LG)2g is equal to the

kernel of dKg(x)
∗ : LG → (LG)2g:

kerγ ′
x = ker dKg(x)

∗ = {H ∈ LG : Ad(x1)H = · · · = Ad(x2g)H = H} (32)

([11, Proposition IV.C]and also in[9]);
(vi) if x ∈ K−1

g (e)0 then

|Pfaff(Ω̄q(x))| = |detγ ′
x|

|det dKg(x)∗| , (33)

where the Pfaffian is, as usual, the square root of the determinant of the matrix of Ω̄q(x)

relative to an orthonormal basis [12, Proposition 3.3];
(vii) if f is a measurable function on K−1

g (e)0, invariant under the conjugation action of G,

and f̃ the induced function onM0
g = K−1

g (e)0/G then∫
M0

g

f̃ d volΩ̄ = 1

vol(G/Z(G))

∫
K−1

g (e)0

f

|det dK∗
g|

d vol, (34)
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whenever either side is defined, where volΩ̄ is symplectic volume for the symplectic
structure Ω̄, while vol by itself always denotes Riemannian volume. (Essentially [12,
Proposition 3.5]or by part (vi) and [22, Lemma 3.4].)

2.5. An application

We shall “prefabricate” a result that will go into the proof ofTheorem 1.
Let g1, g2 be positive integers andg = g1 + g2. Let K−1

g (e)0,0 the subset ofK−1
g (e)

consisting of all points(x1, x2) ∈ G2g1 ×G2g2 such that the isotropy of theG-conjugation
action onGgi is Z(G) atxi, for i = 1,2. We have the mapsCi : G2g → G specified by

C1(x1, x2) = Kg1(x1), C2(x1, x2) = Kg2(x2).

Recall fromProposition 8(Eq. (27)) that

U12
def=C1(K

−1
g (e)0,0) = C2(K

−1
g (e)0,0) = Kg1(U

0
g1
) ∩ Kg2(U

0
g2
),

is an open subset of full measure inG.
Let Di be the set of all regular values ofKgi . By Sard’s theorem,Di is a subset of full

measure inG. The mapsKgi being surjective,Di is contained in the image ofKgi . (The set
Di is also open inG.)

The inversion relation

Kr(br, ar, . . . , b1, a1) = Kr(a1, b1, . . . , ar, br)
−1, (35)

implies thatDi = D−1
i . Therefore,

D
def=D1 ∩ D−1

2 , (36)

is also a subset of full measure inG.

Proposition 9. The following disintegration formula holds:∫
K−1

g (e)0,0

d vol

|det dK∗
g|

= vol(G)

∫
D

[∫
K−1

g1 (h)

d vol(x1)

|det dKg1(x1)∗|

] [∫
K−1

g2 (h−1)

d vol(x2)

|det dKg2(x2)∗|

]
dh, (37)

where dh is the unit-mass Haar measure on G and vol(G) is the volume of G with respect
to the given Ad-invariant metric on the Lie algebra of G.

Proof. Let U 0
r be the subset ofG2r consisting of all points where the isotropy of the

conjugation action ofG is Z(G). ThenU 0
r is a non-empty (in fact, dense) open subset of

G2r (this is a special case of a general theorem on group actions:[2, IX.96, No. 4, Theorem 2;
3, Theorem 4.3.1 and Corollary 6.2.5; 10, Theorem 4.27]). By Theorem 2(v), the mapKg :
G2g → G is a submersion at every point inU 0

g1
× U 0

g2
, and so,K−1

g (e)0,0, being a level set

of a submersion, is a smooth submanifold ofG2g.
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FromProposition 2it follows thatC1|K−1
g (e)0,0 is submersive at every point. Therefore,

by the disintegration formula inProposition 3, we have∫
K−1

g (e)0,0

d vol

|det dK∗
g|

= vol(G)

∫
U12

[∫
C−1

1 (h)∩K−1
g (e)0,0

d vol

|det dK∗
g||det(dC1|ker dKg)∗|

]
dh. (38)

Next we use the determinant identity fromProposition 2to obtain:∫
K−1

g (e)0,0

d vol

|det dK∗
g|

= vol(G)

∫
U12

[∫
C−1

1 (h)∩K−1
g (e)0,0

d vol(x1, x2)

|det dKg1(x1)∗||det dKg2(x2)∗|

]
dh. (39)

Now the identity map

C−1
1 (h) ∩ K−1

g (e)0,0 → K−1
g1

(h)0 × K−1
g2

(h−1)0 : (x1, x2) → (x1, x2),

is an isometry (the metric on the left is inherited from that onG2g). So we have∫
K−1

g (e)0,0

d vol

|det dK∗
g|

= vol(G)

∫
U12

[∫
K−1

g1 (h)0

d vol(x1)

|det dKg1(x1)∗|

] [∫
K−1

g2 (h−1)0

d vol(x2)

|det dKg2(x2)∗|

]
dh.

(40)

Since bothU12 andD are subsets of full measure inG, the integration
∫
U12

· · · dh above

can be replaced by
∫
D

· · · dh. Finally, byProposition 7, the setK−1
gi

(c)0 is of full measure

in K−1
gi

(c) for almost everyc, and so we obtain the desired formula(37). �

2.6. A heat-kernel integral and its limit

If X1, . . . , Xd is an orthonormal basis of the Lie algebra ofG, andα an irreducible
representation ofG then

∑d
i=1 α∗(Xi)

2 is of the form−CαI, whereCα is a scalar (Casimir)
andI is the identity operator on the representation space ofα. The heat-kernelQt has a
standard character expansion:

Qt(x) =
∑
α

(dimα)e−Cαt/2χα(x),

whereχα is the character of the representationα.
The following is a very useful formula:∫

G2g
Qt(hb−1

g a−1
g bgag · · · b−1

1 a−1
1 b1a1)da1 · · · dbg =

∑
α

e−Cαt/2χα(h)

(dimα)2g−1
, (41)
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where the sum is over all inequivalent irreducible representationsαofG. This can be verified
using: (i) the identity (see Example 4.17.3 in[4])∫

G

χα(aba−1c)da = (dimα)−1χα(b)χα(c),

(ii) repeated application of standard convolution properties of characters, and (iii) commut-
ing integral and a series sum. Integral and sum can be commuted because∑

α

e−Cαt/2(dimα)

∫
|χα(· · · )| d · · · ≤

∑
α

e−Cαt/2(dimα)2 = Qt(e) < ∞.

Formula(41) is by Witten[24, Eq. (2.51)]who determined it in his exact evaluation of the
partition function of two-dimensional quantum Yang–Mills theory (the heat-kernel was not
used explicitly in[24]).

It is known[13, Lemma 10.3]that
∑

α(1/(dimα)k) < ∞ for k ≥ 2. So, forg ≥ 2, using
dominated convergence in(41)gives

lim
t↓0

∫
G2g

Qt(hb−1
g a−1

g bgag · · · b−1
1 a−1

1 b1a1)da1 · · · dbg =
∑
α

χα(h)

(dimα)2g−1
. (42)

Proposition 10. The limit formula (42)continues to hold, with the limit lim t↓0 and the sum∑
α being both in the L2(G, dh)-sense.

Proof. Let k = 2g − 1, anddα = dimα. Then∥∥∥∥∥
∑
α

e−Cαt

dk
α

χα −
∑
α

1

dk
α

χα

∥∥∥∥∥
2

L2(G)

=
∑
α

(e−tCα − 1)2

d2k
α

,

which, for t > 0, is bounded, term by term, by the convergent series
∑

α(1/d
2k
α ). �

3. Evaluation of limits

With notation and assumptions as before, let

K−1
g (h)0

def= the set of all non-critical points ofKg : G2g → Gwhich lie onK−1
g (h)

(43)

for anyh ∈ G.
A point x ∈ G2g is a non-critical point ofKg if and only if the isotropy group atx of the

conjugation action ofG onG2g is discrete, an observation immediate fromTheorem 2(v).
Therefore, in particular

K−1
g (e)0 ⊂ K−1

g (e)0. (44)

If g ≥ 2 then, byProposition 8(also Proposition IIIB of[11]), K−1
g (e)0 is not empty and

hence alsoK−1
g (e)0 �= ∅.
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As a consequence of the disintegration formula, we have the following result (mentioned
in [11, Section IV]).

Lemma 1. Suppose g is an integer ≥ 2. Let f be a continuous function on G2g which is 0
in a neighborhood of the critical points of Kg. Then

lim
t↓0

∫
G2g

f(x)Qt(Kg(x))dx = vol(G)1−2g
∫
K−1

g (e)0

f

|det dK∗
g|

d vol. (45)

Proof. Let C be the set of all critical points ofKg. Then the complementG2g \ C is open
and the imageKg(G

2g \ C) is an open subset ofG of full measure (by Sard’s theorem,
since it contains all regular values of thesurjective mapKg) and hence is also dense inG.
By Proposition 3we have the disintegration∫

G2g
f(x)Qt(Kg(x))dx = vol(G)−2g

∫
Kg(G2g\C)

F(h)Qt(h)d vol(h), (46)

where

F(h)
def=

∫
K−1

g (h)0

f

|det dK∗
g|

d vol, (47)

is a continuous function ofh ∈ Kg(G
2g \ C).

The identitye belongs toKg(G
2g \ C) sinceK−1

g (e)0 �= ∅. Moreover,F(h) is 0 whenh

is outside the compact setKg(support(f)) ⊂ Kg(G
2g \ C). SoF extends to a continuous

function onG, 0 outsideKg(G
2g \C). So, remembering that the Riemannian volume onG

is vol(G) times the normalized Haar massdh∫
G2g

f(x)Qt(Kg(x))dx = vol(G)1−2g
∫
G

F(h)Qt(h)dh, (48)

and, by the initial condition property of the heat-kernelQt , this approaches the limit

vol(G)1−2gF(e) = vol(G)1−2g
∫
K−1

g (e)0

f

|det dK∗
g|

d vol,

ast ↓ 0. �

Things are much easier when we deal with a regular value ofKg.

Lemma 2. Let r be any integer ≥ 1, f a continuous function on G2r, and c a regular value
of Kr : G2r → G. Then

lim
t↓0

∫
G2r

f(x)Qt(Kr(x)c
−1)dx = vol(G)1−2r

∫
K−1

r (c)

f

|det dK∗
r |

d vol. (49)

Proof. The argument is essentially the same as in the preceding lemma, but we no longer
have to worry about critical points ofKr since there are none onK−1

r (c).



A.N. Sengupta / Journal of Geometry and Physics 47 (2003) 398–426 415

LetU andV be neighborhoods ofc, with V̄ ⊂ U, andŪ consisting only of regular values
of Kr. Let φ be a continuous function onG, with 0 ≤ φ ≤ 1 everywhere, equal to 1 onV
and equal to 0 outsideU. Letψ = 1 − φ. Thenf = (φ ◦ Kr)f + (ψ ◦ Kr)f , and∣∣∣∣

∫
G2r

f(x)ψ(Kr(x))Qt(Kr(x)c
−1)dx

∣∣∣∣ ≤ |f |sup sup
y∈G\V

Qt(yc−1) → 0, as t ↓ 0,

by a uniform-limit property of the heat-kernelQt ast ↓ 0.
On the other hand, the integrand in∫

G2r
f(x)φ(Kr(x))Qt(Kr(x)c

−1)dx,

is 0 near the critical points ofKr. Note also thatφ(Kr(x)) = 1 whenx ∈ K−1
r (c), and

K−1
r (c) contains no critical point ofKr. So, byProposition 3and the argument used in

Lemma 1, ast ↓ 0, this integral approaches the limit

vol(G)1−2r
∫
K−1

r (c)

f

|det dK∗
r |

d vol.

Combining all these observations, we obtain the desired result. �

The preceding result is essentially present in Forman[8].

4. Proof of the main result

Letg be a positive integer. Recall thatK−1
g (e) ⊂ G2g. The set of points onK−1

g (e) where

dKg(x) : TxG
2g → TKg(x)G is surjective is denoted asK−1

g (e)0. The set of points on

K−1
g (e) where the isotropy group of theG-conjugation action isZ(G) is denotedK−1

g (e)0.

Now supposeg1 andg2 are positive integers withg = g1 + g2. We denote byK−1
g (e)0,0

the subset ofK−1
g (e) consisting of all points(x1, x2) ∈ G2g1 ×G2g2 such that the isotropy

of theG-conjugation action onGgi is Z(G) atxi, for i = 1,2. Thus

K−1
g (e)0,0 = ∪c∈GK−1

g1
(c−1)0 × K−1

g2
(c)0. (50)

The subsetU 0
gi

of G2gi where the isotropy group isZ(G) is (dense and) open inG2gi , as
proved inProposition 5. So

K−1
g (e)0,0 = (U 0

g1
× U 0

g1
) ∩ K−1

g (e) = (U 0
g1

× U 0
g2
) ∩ K−1

g (e)0,

is an open subset ofK−1
g (e)0.

Theorem 3. For any integer g ≥ 2, and integers g1, g2 ≥ 1 with g = g1 + g2:∫
K−1

g (e)0

d vol

|det dK∗
g|

=
∫
K−1

g (e)0

d vol

|det dK∗
g|

, (51)
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K−1

g (e)0

d vol

|det dK∗
g|

=
∫
K−1

g (e)0,0

d vol

|det dK∗
g|

, (52)

∫
K−1

g (e)0

d vol

|det dK∗
g|

= vol(G)2g−2lim
t↓0

∫
G2g

Qt(Kg(x))dx. (53)

Proof. If f is a continuous function onG2g, with 0 ≤ f ≤ 1, which is 0 in a neighborhood
of the critical points ofKg then

vol(G)1−2g
∫
K−1

g (e)0

f d vol

|det dK∗
g|

= lim
t↓0

∫
G2g

f(x)Qt(Kg(x))dx ≤ lim
t↓0

∫
G2g

Qt(Kg(x))dx. (54)

The right side was noted in(42) to be finite. Taking appropriatef , with f = 1 at distances
beyond 1/n from the critical points ofKg, and then lettingn → ∞ we have, by dominated
convergence

vol(G)1−2g
∫
K−1

g (e)0

d vol

|det dK∗
g|

≤ lim
t↓0

∫
G2g

Qt(Kg(x))dx. (55)

Next, observing that

Kg(x1, x2) = Kg2(x2)Kg1(x1),

for x1 ∈ Gg1 andx2 ∈ Gg2, and using the convolution property of the heat-kernel∫
G

Qt(ac)Qs(c
−1b)dc = Qt+s(ab) = Qt+s(ba),

we have∫
G

[∫
G2g1

Qt(Kg1(x1)c
−1)dx1

∫
G2g2

Qt(cKg2(x2))dx2

]
dc =

∫
G2g

Q2t(Kg(x))dx.

(56)

Then

lim
t→0

∫
G2g

Qt(Kg(x))dx

= lim
t→0

∫
G

[∫
G2g1

Qt(Kg1(x1)c
−1)dx1

∫
Gg2

Qt(cKg2(x2))dx2

]
dc

=
∫
G

(
lim
t→0

∫
G2g1

· · ·
) (

lim
t→0

∫
G2g2

· · ·
)

dc, (57)

because of theL2(G,dc)-convergence of the limits limt→0 noted inProposition 10.
Let Di be the set of all regular values ofKgi : G2gi → G, and

D
def=D1 ∩ D2, (58)

which, as we have already noted in the context of(36), is a dense open subset of full measure
in G.
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SinceD is of full measure inG, we can replace
∫
G

· · · dc by
∫
D

· · · dc on the right side
in (57). Then using the limit value computed inLemma 2we have

lim
t→0

∫
G2g

Qt(Kg(x))dx

= vol(G)2−2g
∫
D

[∫
K−1

g1 (c)

d vol

|det dK∗
g1

|
∫
K−1

g2 (c−1)

d vol

|det dK∗
g2

|

]
dc. (59)

Now inserting our “prefabricated” pieceProposition 9, we see that the integral
∫
D

[· · · ]dc
on the right side in(59) is equal to

[vol(G)]−1
∫
K−1

g (e)0,0

d vol

|det dK∗
g|

.

Combining this with(55), we write

vol(G)1−2g
∫
K−1

g (e)0

d vol

|det dK∗
g|

≤ lim
t→0

∫
G2g

Qt(Kg(x))dx =
∫
K−1

g (e)0,0

d vol

|det dK∗
g|

vol(G)1−2g. (60)

SinceK−1
g (e)0,0 ⊂ K−1

g (e)0, it follows that the inequalities in(60)are equalities. �

Since the middle integral in(60) is finite so are the others. As a consequence, we have
the following corollary.

Corollary 1. For any integer g ≥ 2, the sets K−1
g (e)0,0 and K−1

g (e)0 open, dense subsets

of full measure in K−1
g (e)0.

Now we are ready for the following proposition.

Proposition 11. For any integer g ≥ 2 and any continuous function f on G2g

lim
t↓0

∫
G2g

f(x)Qt(Kg(x))dx = vol(G)1−2g
∫
K−1

g (e)0

f

|dK∗
g|

d vol. (61)

Proof. We have proved this (inLemma 1) whenf is zero near the critical points ofKg.
We have also proved this forf = 1 in Theorem 3. Now by Proposition 6, the setUg of
non-critical points ofKg is of full measure inG2g, and so∫

G2g
f(x)Qt(Kg(x))dx =

∫
Ug

f(x)Qt(Kg(x))dx.

SinceK−1
g (e)0 is a subset ofUg, the task reduces to proving a limiting result for integrals

overUg, given that the limiting formula holds for continuous functions of compact support
as well as for the constant function 1. The proof is finished by usingLemma 3below (take
X to beUg, which is an open subset ofG2g). �
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Lemma 3. Let µt , for t ≥ 0,be finite Borel measures on a locally compact Hausdorff space
X such that lim t↓0 µt(X) = µ0(X) and

lim
t↓0

∫
X

f dµt =
∫
X

f dµ0,

for every continuous function f of compact support in X. Assume that X is the union of a
countable collection of compact sets. Then

lim
t↓0

∫
X

f dµt =
∫
X

f dµ0,

for every bounded continuous function f on X.

Proof. Let ε > 0.
SinceX is the union of a countable number of compact sets, andµ0(X) < ∞, there is a

compact setK ⊂ X for which

µ0(K
c) < ε.

By local compactness there is an open setU ⊃ Kwith compact closurēU, and, by Urysohn’s
lemma, there is a continuous functionΦ with

1K ≤ Φ ≤ 1U.

First we demonstrate that lim supt↓0 µt(Ū) is < ε. Fors > 0 we have

µs(Ū
c) = µs(X) − µs(Ū) ≤ µs(X) −

∫
X

Φdµs,

and so, for anyt > 0,

sup
0<s≤t

µs(Ū
c) ≤ sup

0<s≤t

µs(X) − inf
0<s≤t

∫
X

Φdµs,

which implies

lim sup
t↓0

µt(Ū
c) ≤ lim sup

t↓0
µt(X) − lim inf

t↓0

∫
X

Φdµt

= µ0(X) −
∫
X

Φdµ0 < µ0(K
c) < ε.

Now choose an open setV ⊃ Ū with compact closurēV , and a continuous functionψ with

1Ū ≤ 1 − ψ ≤ 1V , i.e. 1Vc ≤ ψ ≤ 1Ūc . (62)

Let f be a continuous function onX and write it as

f = ψf + (1 − ψ)f.

Since(1 − ψ)f is continuous and of compact support

lim
t↓0

∫
X

(1 − ψ)f dµt =
∫
X

(1 − ψ)f dµ0.
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Now we must bound
∫
X
ψf dµt −

∫
X
ψf dµ0. To this end, we have∣∣∣∣

∫
X

fψ dµt

∣∣∣∣ ≤ |f |supµt(Ū
c),

for all t ≥ 0.
Combining all this, we have

lim sup
t↓0

∣∣∣∣
∫
X

f dµt−
∫
X

f dµ0

∣∣∣∣ ≤ lim sup
t↓0

[|f |supµt(Ū
c)+ |f |supµ0(Ū

c)] ≤ 2|f |supε,

and sinceε > 0 is arbitrary, this is all we needed. �

Finally, we can turn to the following proof.

Proof of Theorem 1. Letf be a continuous function onG2g, invariant under the conjugation
action ofG, andf̃ the function induced onM0

g = K−1
g (e)/G. Then

lim
t↓

∫
G2g

f(x)Qt(Kg(x))dx = vol(G)1−2g
∫
K−1

g (e)0

f

|dK∗
g|

d vol (by Eq. (61))

= vol(G)1−2g vol(G)

|Z(G)|
∫
M0

g

f̃ d volΩ̄ (by Thoerem 2(vii ))

which is what we had set out to prove. �
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Appendix A. Background/heuristics

We shall summarize the background from whichTheorem 1arises.

A.1. Geometric terminology

LetΣ be a closed (= compact without boundary), oriented two-dimensional Riemannian
manifold, andG a compact, connected, semisimple Lie group with Lie algebraLG equipped
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with an Ad-invariant metric. Letπ : P → Σ be aprincipal G-bundle, i.e.P is a smooth
manifold with a smooth right action ofG onP denoted by

P × G → P : (p, g) �→ pg = Rgp = γp(g),

andπ : P → M is a smooth surjection such that each pointm ∈ M has an open neigh-
borhoodU for which there is aC∞ diffeomorphismφ : U × G → π−1(U) satisfying
πφ(a, g) = a andφ(a, g)h = φ(a, gh) for every(a, g, h) ∈ U × G2.

A connection onP is anLG-valued one-formω onP for whichR∗
gω = Ad(g−1)ω for

everyg ∈ G, andω(γ ′
p(H)) = H for everyp ∈ P andH ∈ LG. The setA of all connections

onP is an infinite-dimensional affine space. The tangent spaceTωA is {ω′ − ω : ω′ ∈ A}
and this is readily checked to be

TωA = Λ̄1(P; LG),

the latter being the set of all smooth one-formα on P with values inLG and satisfying
R∗

gα = Ad(g−1)α andαp(v) = 0 for all g ∈ G, p ∈ P , and allv ∈ kerπ′(p).
A gauge transformation or bundle automorphism is aC∞ diffeomorphismφ : P → P

for whichφ◦Rg = Rg ◦φ for all g ∈ G andπ◦φ = π. The set of all gauge transformations
forms a groupG under composition and this group acts on the right onA by

A× G→ A : (ω, φ) �→ φ∗ω.

Physically, elements ofA aregauge fields and elements of the quotient spaceA/G represent
physically equivalent classes of gauge field configurations. It is mathematically convenient
to fix a basepointo ∈ Σ and work with the subgroupG0 of G consisting of allφ ∈ G for
whichφ(u) = u for anyu ∈ π−1(o), and the corresponding quotient

C0 = A
Go

.

For any connectionω ∈ A, theω-horizontal lift of a C1 pathc : [0,1] → M through
any pointu ∈ π−1(c(0)) is the uniqueC1 path c̃ω : [0,1] → P for which π ◦ c̃ω = c,
c̃ω(0) = u, andω((c̃ω)′(t)) = 0 for all t ∈ [0,1]. Piecing such paths together extends the
notion to piecewiseC1 pathsc. If c is a loop theñcω(1) is on the same fiber asu and so
there is a uniqueh ∈ G for which c̃ω(1) = uh; thish is theholonomy of ω around the loop
c, with initial pointu:

hu(c;ω) : holonomy ofω aroundc, with initial pointu.

If u is replaced byug for someg ∈ G thenhu(c;ω) gets conjugated byg, while if ω is
replaced byφ∗ω thenhu(c;ω) gets conjugated byφ(u), whereφ(u) is the unique element
of G for whichφ(u) = uφ̂(u). Consequently, iff is any function onGn which is invariant
under the conjugation action ofG onGn, andc1, . . . , cn are piecewise smooth closed loops
onΣ based at some point then

f(hu(c1;ω) · · ·hu(cn;ω)),

is independent of the choice ofu and specifies a function on the quotient spaceA/G.



A.N. Sengupta / Journal of Geometry and Physics 47 (2003) 398–426 421

Thecurvature Ωω of a connectionω is theLG-valued two-form onP given on any vectors
X, Y ∈ TpP by

Ωω(X, Y) = dω(X, Y) + [ω(X), ω(Y)].

A.2. The Euclidean quantum Yang–Mills functional integral

The invariance properties ofΩω and the Ad-invariance of the metric onLG implies
that there is a well-defined function|Ωω| on Σ whose value at any pointm is equal to
|Ωω(e1, e2)|LG, wheree1, e2 are vectors inTpP projecting byπ′(p) to an orthonormal
basis inTmM, p being any point in the fiberπ−1(m). The Yang–Mills action functional
SYM is the function onA given by

SYM (ω) = 1

2

∫
Σ

|Ωω|2 dσ, (A.1)

whereσ is the area-measure induced by the metric onΣ.
The Euclidean quantum Yang–Mills theory of the gauge fieldsω onΣ leads to consid-

eration of integrals∫
A
f(hu(c1;ω) · · ·hu(cn;ω))e−SYM (ω)/tDω, (A.2)

wheret is a positive parameter, the integrand is the function described before andDω is
“Lebesgue measure” onA corresponding to the metric onA determined by the metrics on
Σ andLG. Expression(A.2) is formal since no useful rigorous version of such a “Lebesgue
measure” exists for the infinite-dimensional spaceA.

A.3. The rigorous YM functional integral

In [17] the following rigorous framework was constructed using(A.2) as a guide. View
Σ as a quotient:

q : D → Σ,

whereD is the closed unit disk andq pastes together certain pairs of arcs on∂D. Choose
the basepointo = q(O), whereO is the origin inD. Take any triangulation ofD made up
of radial segments and cross-radial segments, such thatD projects to a triangulationT of
Σ. In [17] a probability measureµt was constructed on a spaceCo and for each loopc made
up of edges ofT a random variableh(c;ω) was constructed onCo, guided by the goal of
realizing the normalized form of the integral(A.2) as∫

C0

f(h(c1;ω) · · ·h(cn;ω))dµt(ω). (A.3)

The value of this rigorously defined integral was calculated.

A.4. The discrete Yang–Mills measure

LetT be any two-dimensional simplicial complex triangulating our surfaceΣ. LetET =
{e1, ē1, . . . , eN, ēN} be the set of all oriented one-simplices ofT , with ēdenoting the reverse
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of e. LetAT be the set of allx ∈ GET , mappingsET → G : b �→ xb = x(b), for which
xēj = x−1

ej
for all edgesej. If κ is any path made up of edgesκ = bm, . . . , b1 andx ∈ AT

define

x(κ)
def=x(bm), . . . , x(b1).

OnAT there is the unit-mass normalized Haar measure

dx = dxe1, . . . ,dxeN , (A.4)

where each dxej is Haar measure of total mass 1 onG. Now let

(0,∞) × G → R : (s, x) �→ Qs(x),

be the heat-kernel onG specified by the metric onG normalized to
∫
G
Qt(y)dy = 1 where

dy is Haar measure of total mass 1 onG. Thediscrete Yang–Mills measure νTt onAT is
given by

dνTt (x) =
∏
∆

Qt|∆|(x(∂∆))dx, (A.5)

where the product is over all the two-simplices∆ of T , |∆| denotes the area enclosed
by ∆, and the conjugation/inversion–invariance property of the heat-kernel ensures that
Qt|∆|(x(∂∆)) does not depend on where boundary loop∂∆ is based and which way it is
oriented. The convolution property(A.16) can be used to show thatνTt has an invariance
property under subdivisions of the triangulationT (see[17, Chapter 7]). Though we have
used a simplicial complexT , we could have worked with a cell-complex.

A.5. The Yang–Mills loop expectations

Assume now thatG is simply connected (the general case requires additional issues and
notation).

In [17, Theorem 8.4](see also the introduction in[17] for a statement) it is proved that∫
C0

f(h(c1;ω) · · ·h(cn;ω))dµt(ω) = 1

Nt

∫
f(x(c1) · · · x(cn))dνTt (x), (A.6)

whereNt is the normalizing factor

Nt = νt(AT ),

given explicitly by

Nt =
∫
G2g

Qt|Σ|(b−1
g a−1

g bgag · · · b−1
g a−1

g bgag)da1 db1 · · · dag dbg. (A.7)

Here we are assuming thatΣ is a closed, oriented surface of genusg ≥ 1. Note thatNt does
not depend on the triangulationT . Heuristically,Nt corresponds to the “partition function”∫
A e−SYM (ω)/tDω:

Nt ∼
∫
A

e−SYM (ω)/tDω. (A.8)
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A.6. Symplectics

On the infinite-dimensional affine spaceA there is asymplectic structureΩ, due to Atiyah
and Bott, given on any two vectorsA,B ∈ TωA by

Ω(A,B) =
∫
Σ

〈A ∧ B〉, (A.9)

where〈A ∧ B〉 is the two-form onΣ whose value on any vectorsX, Y ∈ TmΣ is

〈A ∧ B〉(X, Y) = 〈A(X), B(Y)〉LG − 〈A(Y), B(Y)〉LG.

A straightforward calculation (see, for example (5.5b) in[19]) shows that the action ofG
onA preserves this structure and there is a corresponding moment map, this being in fact
the curvature function

ω �→ J(ω) = Ωω.

Thus the Yang–Mills density e−SYM (ω)/t is e−|J(ω)|2/2t .

A.7. The classical limit of µt

A heuristic calculation now shows that, for suitableG-invariant functionsF onA, we
should have

lim
t↓0

∫
A
F(ω)e−|J(ω)|2/tDω ∼

∫
A0/G

F volΩ̄,

where vol̄Ω is the volume form corresponding to the induced symplectic structureΩ̄ on
(part of) themoduli space of flat connections

J−1(0)

G
= A

0

G
.

HereA0 is the set of allflat connections, i.e. those with curvature zero.
Combining all this leads to the conjecture that

lim
t↓

∫
AT

f(x(c1) · · · x(cn))dνTt (x) ∼
∫
A0/G

f(hu(c1;ω) · · ·hu(cn;ω))d volΩ̄([ω]),

(A.10)

where |ω| ∈ A0/G corresponds toω ∈ A0, and ∼ indicates equality up to constant
multiple.

A.8. The standard realization of A0/G

On the surfaceΣ, there are loopsA1, B1, . . . , Ag, Bg all based ato, whose homotopy
classes generate the fundamental groupπ1(Σ, o) subject to the condition

BgAgBgAg · · ·B1A1B1A1 = I, (A.11)
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whereI is the identity element inπ1(Σ, o) and equality above is inπ1(Σ, o). Here, as
always,g is the genus ofΣ, assumed to be positive.

Assume again thatG is compact, connected, simply connected, andΣ is closed, oriented
of genusg ≥ 1. Recall the product commutator mapKg : G2g → G from (2). A standard
result (a detailed proof of which is available in[19, Theorem 4.1]for the more general case
of Yang–Mills connections on possibly non-trivial bundles) says that the mapping

I : A0 → G2g : ω �→ (hu(A1;ω) · · ·hu(Bg;ω)), (A.12)

has image

I(A0) = K−1
g (e).

Moreover,I induces a well-definedbijection

Ī :
A0

G
→ K−1

g (e)

G
, (A.13)

where, on the right,G acts onK−1
g (e) ⊂ G2g by conjugating each factor. It is this identifi-

cation of the moduli space of flat connections withK−1
g (e)/G which we use.

It is proved in[19, Theorem 6.1]that the symplectic structurēΩ onA0/G induces viāI
the symplectic structurēΩ onK−1

g (e)0/G mentioned in(9).

A.9. The limit for curves generating π1(Σ, o)

We specialize the conjecture(A.10)to the case whenc1, . . . , cn are the loopsA1, . . . , Bg.
The case of general loopsc1, . . . , cn reduces to this special case by using the fact that
Qt(x) → δ(x) ast ↓ 0 to eliminate homotopically trivial loops. This requires some work;
details are as in the proof of[18, Lemma 8.5].

Consider again the picture of our closed, oriented genusg surfaceΣ arising from the
closed unit diskD ⊂ R2 = C by a quotient mapq : D → Σ. On∂D mark off the points
zk = e2πik/4g, for k ∈ {0,1, . . . ,4g}. Let Lk denote the radial segment from the centerO

of D to the pointzk. Let Sk be the arc along∂D running fromzk−1 to zk. The mapq is
injective in the interior ofD and pastesS1 with S3 (the bar indicates reverse),S2 with S4, S5
with S7, . . . , S4g−2 with S4g. Thus, for example,q(L0)q(S1)q(L0) is aloop on the surface,
which we denote asA1. Similarly, we have the loopsB1, A2, B2, . . . , Ag, Bg:

Ak
def=q(L0)q(S4k−3)q(L0), Bk

def=q(L0)q(S4k−2)q(L0). (A.14)

Traversing around∂D along the arcsSi, and going back and forth toO alongL0, erasing
segments which are traversed forwards and backwards successively, the loopBgAgBgAg · · ·
B1A1B1A1 in Σ simplifies toa(L0)q(∂D)q(L0). Compare with the condition(A.11).

Consider now the triangulationT ′ of D given by the radial segmentsL1, . . . , L4g, and
the arcsS1, . . . , S4g. Unfortunately,T = q(T ′) fails to be a triangulation ofΣ becauseq
identifies all the pointszk; but it is “nearly” a triangulation (all that is needed is a subdivision
of T ′ using two new vertices on each arcSk and corresponding radial segments). We will
disregard this technical issue (which can be resolved with the subdivision method and the
convolution technique discussed below).
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Observe thatA1, . . . , Bg are loops inT . The orientation ofΣ is the one induced byq
from the standard orientation ofD. Let∆k be the oriented two-cells inT whose boundary
is q(Lk)q(Sk)q(Lk−1). The integral of interest to us is∫

AT

f(x(A1), . . . , x(Bg))

4g∏
k=1

Qt|∆k |(x(∂∆k))dx, (A.15)

wheref is any continuous function onG2g-invariant under the conjugation action of
G and dx denotes unit-mass Haar measure as in(A.4). It will be useful to introduce a
relabelling of the edge-variablesx(ej) which will reflect the specific situation at hand.
Let

xi
def=xLi, ak = x(q(S4k−3)), bk = x(q(S4k−2)),

for i ∈ {0,1, . . . ,4g − 1} andk ∈ {1,2, . . . , g}. Compare with(A.14).
In the integrand in(A.15), thef(· · · ) term involvesx0 but no otherxi. Integration over

x1, . . . , x4g−1 can be carried out step-by-step using the fundamental convolution property
of the heat-kernel∫

G

Qr(y
−1z)Qs(xy)dy = Qs+r(xz), (A.16)

to combine all adjacent two-cells and eliminate the variablesx1, . . . , x4g−1 from the inte-
gration. For example,x1 appears in the integration(A.15) only as∫

G

Qt|∆1|(x
−1
1 a1x0)Qt|∆2|(x

−1
2 b1x1)dx1,

and this, by the convolution property is equal to

Qt(|∆1|+|∆2|)(x
−1
2 b1a1x0).

Nextx2 is eliminated:∫
G

Qt|∆3|(x
−1
3 a−1

1 x2)Qt(|∆1|+|∆2|)(x
−1
2 b1a1x0)dx2

= Qt(|∆1|+|∆2|+|∆3|)(x
−1
3 a−1

1 b1a1x0).

Proceeding in this way all around the circle∂D reduces(A.15) to∫
f(x−1

0 a1x0, . . . , x
−1
0 bgx0)Qt|Σ|(x−1

0 Kg(a1, . . . , bg)x0)dx0 da1 · · · dbg.

Conjugation invariance off and of the heat-kernel, combined with
∫
G

dx0 = 1, implies
thatx0 drops out. Thus∫

AT

f(x(A1) · · · x(Bg))dνTt (x)

=
∫
G2g

f(a1, . . . , bg)Qt|Σ|(Kg(a1, . . . , bg))da1 · · · dbg, (A.17)

where|Σ| is the area ofΣ, obtained as the sum of the areas|∆i|.



426 A.N. Sengupta / Journal of Geometry and Physics 47 (2003) 398–426

Specializing our conjecture(A.10) to this situation now givesTheorem 1(without the
constant of proportionality).
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